Let \(T/S \) an algebraic stack, \(F \) a sheaf on \(\text{Lisse-étale site of } X \). Then \(F \) is quasi-coherent if for all objects \(T \rightarrow X \) in \(\text{Lisse-étale} \), \(\pi^* F \) is f. coherent on \(T \) \(\Rightarrow \) \(A F \text{to } T \).

\[
\text{Proof: } \ F/S \text{ q.coh } \iff \ F \text{ smooth surjection } X \rightarrow X
\]

\(\text{s.t. } \pi^* F \text{ is q.coh on } X. \)

Computation cohomology:
\[
\text{9.a.2.}
\text{given a alg stack } X \text{ smooth surjection } X \rightarrow X
\]

\[
X \times_X X \Rightarrow X \left(\rightarrow X \right)
\]

Simplicial objects:
\[
\Delta = \text{finite ordered sets, order preserving maps}
\]

\[
\text{oh} = \{ [0, 1, \ldots, n] \}
\]

\[
\text{Simp}(C) = \text{Fun}(\Delta^{op}, C)
\]

\[
C_2 \equiv C_1 \equiv C_0
\]

\[
[0,1,2] \quad [0,1] \quad [0]
\]

\[
\Rightarrow \text{a morphism } \ a \rightarrow b \quad C
\]
If \(C \) is a site, with final object \(e \) (Sch/S)

then we can consider the map \(X \to e \) with simplicial object

\[
X_\bullet = (\exists X \times X \Rightarrow X)
\]

\(C/X_\bullet \).

General statement: If \(C \) is a site, with final object \(X \to e \) cover, then \(H^i(C, F) = H^i(C/X_\bullet, \pi^* F) \).

Example: Stacks as stacks \(X \to Y \) semi-surjective \(F \)-coherent.

then \(H^i(X, F) = H^i(X_\bullet, \pi^* F) \).

Even better! Combinatorial way to compute cohom. at least for "simplicial sites".

Čech spectral seq: \(H^0(X_\bullet, F) \Rightarrow H^{p+q}(X, F) \)

\(\Rightarrow E_1 \).

Not translate to alg. spaces from stacks as above:

Let \(f : X \to Y \) a compact, separated morphism of

\(\bullet \ldots \)
Prop if $X \to S$ smooth surjective, then R^if_*F are $q.coh$.

There is an equivalence of categories $\text{QCoh}(\mathcal{E}t(X)/X_0) \cong \text{QCoh}(X)$ (require each sheaf complex objects to be $q.coh$).