Stein Factorization: \(X, Y \subseteq \text{alg. spaces}\)

Let \(f : X \to Y\) 2. compact, 2. sep. morphism, we say \(f\) is Stein if \(\mathcal{O}_Y \to f^* \mathcal{O}_X\) is an iso. of sheaves.

(ex: proper morph of varieties then Stein \(\iff\) fibers are connected) (Taniuki)

Main Observation: \(f : X \to Y\) 2. comp., 2. sep. then \(f\) has a natural factorization

\[
\begin{align*}
 X & \xrightarrow{a} X' \xrightarrow{b} Y \\
 f & \quad (\text{Stein}) \quad (\text{affine})
\end{align*}
\]

\[
X' = \text{Spec}_Y (f^* \mathcal{O}_X)
\]

Ex: application:

\[
f : X \to Y\] sep., 2. finite.

Stein Factorization:

\[
\begin{align*}
 X & \xrightarrow{g} Z \xrightarrow{h} Y \\
 f & \quad (\text{open})
\end{align*}
\]
Theorem (Chow's Lemma)

S noeth scheme $\xrightarrow{f} S$ sep morph. finite type
X reduced alg. space. Then $\mathbb{Z} \rightarrow X$ proper birational
s.t. X is a q. projective S-scheme.

Theorem (Finiteness of Cohomology)

If $f: X \rightarrow Y$ proper morphism of loc. noeth. alg. spaces
\mathcal{F} coherent sheaf on X, then $R^q f_* \mathcal{F}$ are coherent
on $Y \neq g \neq 0$.

(Recall $g = \text{Spec } k$, $R^q f_* \mathcal{F}$ a k-vector space, called $\text{H}^q(X,F)$
coherent $\Leftrightarrow H^q(X,F)$ finite dimensional)

Proof by induction on top space $|X|$

Omitting Representability shift

e.g. "Algebraization of formal moduli", etc.
Artin
Recall: Given a groupoid in schemes $\mathcal{X}_1 \rightrightarrows \mathcal{X}_0$ one can form an associated stack $[\mathcal{X}_0/\mathcal{X}_1]$ (over the big étale site).

Def. If $\mathcal{X}_1 \rightrightarrows \mathcal{X}_0$ is smooth, then one can form $[\mathcal{X}_0/\mathcal{X}_1] = \text{stackification} \Delta$ of representable fibered cat in groupoids $[\mathcal{X}_0/\mathcal{X}_1]$,

$$[\mathcal{X}_0/\mathcal{X}_1](T) = \text{hom}_{\mathcal{X}_0}(T) \ar_{\text{mor}} \mathcal{X}_1(T)$$

(António)

An algebraic stack is a stack equivalent to one as above.

Def. A morphism $f : \mathcal{X} \to Y$ of stacks over $\text{Et}(S)$ is called representable if $U \in \text{Sch}/S$ and $g : U \to Y$ the fiber product $\mathcal{X}_U \times_Y U$ is an algebraic space.
Lemma \[f : X \to Y \text{ as above is representable} \Rightarrow \]

\[+ \quad V \to Y, \text{ } V \text{ alg. space, } \exists x y V \text{ an alg. space.} \]

\[\text{pt: } \leq \leq \]

\[\Rightarrow \quad ? \quad \text{given } V \to Y, \text{ can } U \to V \text{ a scheme get } x \in U \]

\[\exists \text{ scheme } x \]

\[\exists x y U \to \exists x y V \to X \]

\[\downarrow \]

\[\uparrow \]

\[\exists U \to V \to Y \]