Problem us of state & K.B)
is that & need not respect relater!

$$0 \rightarrow E^* \rightarrow E \rightarrow E' \rightarrow 0$$

 $EE) = (E'')I+E'')$
 $ED)FF] = (EY)FF] + (E)(F)$
i.e. what $0 \rightarrow E' \otimes F \rightarrow E \otimes F \rightarrow E' \otimes F \rightarrow 0$
 $\Rightarrow b = e^{-\alpha \omega}$.
i.e. what $D \Rightarrow E' \otimes F \rightarrow E \otimes F \rightarrow E' \otimes F \rightarrow 0$
 $\Rightarrow b = e^{-\alpha \omega}$.
i.e. what $Der^{0}(E,F) = 0$
 ak if $E' \otimes F \approx fhat$ ($C = 1, ranh, 1$
 $1 \circ c.he)$
Actually shows: K.(D) is a K'D module.
Useful frontone I K.(D) is that it has
'fundamental cycles'' it schedures
 $Z = X cloud$ $[Z] \in K.(X)$
 $[0]_Z = [0x/dz]$

Consider divisors
what's the relationship between
$$Dcx$$
 Cartier
 $[O_D] \in K(X)$
 $an [O(D)]^{o}$
 $add = O(-D) = O(D)^{o}$
 $add = O(D)^{o$

Our vert gal: build a ray map backards
K(X) - CH(X) us y chan classes.
we noted here that we can dive
"total chan classes"
E/X -> I+C,(E)+C2(E)+...+C,(E) = C(E)
ub.
taxe had the property that

$$C = E^{21} \rightarrow E \rightarrow E^{1} \rightarrow 0$$

 $= C(E) = C(E)C(E')$
 $[E]+[E] - C = C(E)C(E')$
"standed" yaga to turn this into a y mp
"standed" yaga to turn this into a y mp
Next their we tweak a to sot
ch: K(X) -> CH(X) 6Q
rig hom.
to head fourds Poem. Pich.

BR: complex global sectors if the bundles on cres.

$$L/\chi$$
 X core.
 $\Gamma(L)$ in trans if $dy \perp d$ growty if X
 $dim H(L) - dim H(L) = dy \perp +1 - g$
 X $H^{0}(L) = T_{2} \perp$
 JT $(H'(L) = T_{2} \perp$
 $Speck$ $C_{1}(L) \in CH'(X) = CH_{0}(X)$
 L $K(X) \xrightarrow{C_{1}} CH(X) = CH(X)$ $dH = T_{2} \in C(L)$ if
 I $H(L) = T_{2} \perp$
 L $K(X) \xrightarrow{C_{1}} CH(X) = CH(X)$
 L $K(X) \xrightarrow{C_{1}} CH(X) = CH(X)$