Infrectien produts via deformaton to normal cave
"sperialyator to normal cove"
$Z \rightarrow X$ nylurly enbeded
$V \mapsto X$ clond shocleve, get a clared emlady $C_{n n z} V \longrightarrow C_{z} X=N_{z} X$ nomal bundle.
ditue speialyaton map

$$
\begin{aligned}
& Z_{k}(x) \xrightarrow{s p} Z_{k}\left(N_{z} x\right) \xrightarrow{\text { nzensadm }} C_{H_{k-c}}(z) \rightarrow C+c+H_{k-c}(x) \\
& {[v] \longrightarrow\left[C_{V n z} v\right] \longrightarrow[v] n[z] \rightarrow[\nu] \cdot[z]}
\end{aligned}
$$

Inlact: sp well dified map $\mathrm{CH}_{k}(x) \rightarrow \mathrm{CH}_{k}\left(\mathrm{~N}_{z} x\right)$ this canes feem "dematon to nasmal coe"

Constact a farily

Definton at $M_{2} X$

$$
\begin{gathered}
B \ell_{z \times 83}\left(X \times A^{\prime}\right) \\
\downarrow \\
X \times A^{\prime} \longleftarrow z \times\{0\}
\end{gathered}
$$

$$
\mathrm{Bl}_{2_{003} \times 43} A^{\prime} \times P^{\prime}
$$ cental fir two compents. alouss hee inving.t

$$
\begin{aligned}
& \text { oftarcomgnent of invin fo }
\end{aligned}
$$

in ar cars, this i. $B l_{z \times(00)}\left(x \times\{03) \cong B l_{z} X_{\in P P} N_{z} x\right)$

$$
\stackrel{\downarrow}{\downarrow} \stackrel{\downarrow}{x} \longleftrightarrow z
$$

Pieces of excepted dis if $\mathrm{Bl}_{\text {ex } \times 103} \times \times A^{\prime}$
camps: $\mathbb{P}\left(N_{z} \times \oplus \mathbb{1}\right)$

$$
\mathbb{P}\left(N_{z} x\right)=\mathbb{P}\left(N_{z} x\right)
$$

$$
M_{z} X=\left(B l_{z \times<0\rangle} x \times A A^{\prime}\right) \backslash B l_{z} X
$$

at the cantal) $f / r=\mathbb{P}\left(N_{2} x \oplus 1\right) \backslash \mathbb{R}\left(\mu_{t}\right)$ $=N_{z} X$

Intrscaton ring (X smoath varety ow a feld k) $\mathrm{CH}^{*}(X)$ ragstrcte on cycle classes is dhed $h^{\prime}{ }^{\prime}$
$[v] \cdot[w] \quad v, w \leftrightarrow X$ clared silvactes $\Delta: X \longrightarrow X_{k} X$ is a neyulor embledd?.
(mave gearally: if $f: x \rightarrow y, y$ smath then $\gamma_{f}: x \rightarrow x \times y$ is a gulur embaddy
defe $[v] \cdot[w]=\Delta([v \times w])$

$$
\{x \mid(x, x) \subset V \times w\}
$$

Alsa yree gensal pollhacks (not veceessnity flat!) if $f: x \rightarrow y$ maghism, x, Y smooth.

$$
\begin{aligned}
& f^{*}(\alpha)=\gamma_{f}^{*}([x] \times \alpha) \\
& \alpha+\operatorname{crt}(y
\end{aligned}
$$

Chow Vistry fo foday.

Chern classes
Recali: defed $C_{1}(D)=c_{1}(L) \in C H^{\prime}(X)$

$$
L=\theta(D)
$$

via: $C_{1}(L) \equiv C_{1}(L) \cap[X]=[D]$
great way of expresy info ahout a line buudle

$$
L \leadsto C_{1}(L)=\underset{ }{[D] \in C H^{\prime}(X)=\operatorname{Pic} X}
$$

Hyp dm?
E vance what itrmatar can $\operatorname{eH}(x)$ see about E ?
Special core $E=\underset{i=1}{\ominus} L_{i}$
Native that any symunatic pry a promn $C_{1}\left(L_{i}\right)$'s forms al to gre a well diked op on it r bundles.

$$
\begin{aligned}
& c_{1}(E)=c_{1}\left(L_{1}\right)+\cdots+c_{1}\left(L_{r}\right) \in C H^{\prime} \\
& c_{2}(E)=\sum_{i<j} c_{1}\left(L_{i}\right) \cdot c_{1}\left(L_{j}\right) \in C H^{2} \\
& c_{l}(E)=\sum_{i_{1}, \ldots i_{i}} c_{1}\left(L_{i_{1}}\right) \cdots c_{1}\left(L_{i_{2}}\right) \in C H^{l}
\end{aligned}
$$

"The Chum claros"

Veatr bundas
"chern"s"
i athotly ~~dondises

$$
\left\{\left(A M D y^{p}, y s!\right)\right.
$$

Gome sane praps, but loay lessinto.
Slenos/r $\sim \mathrm{H}^{4^{+}}$Calom. Hys $\}_{\text {Matine }}^{\substack{\text { Mationc } \\ \text { Cak }}}$
$\frac{\text { Def of high chern clases }}{\text { (Splitty praple) }}\binom{$ all raretes }{ smath }
Gaali debe a notru $f c_{l}(E) \quad l \leq r k E$ s.t. if $E \cong L_{1} \otimes \ldots \oplus L_{r}$ then $C_{l}(t=1=$ den. symm. poly d dy d

$$
\text { in } C_{1}\left(L_{i}\right)^{1 s}
$$

- if $x \rightarrow y E / y$ then

$$
t^{*} c_{l}(E)=c_{l}\left(\rho^{*} E\right)
$$

maregewally it vele

$$
\begin{aligned}
& \text { velue }, O E^{r}=0 \\
& E \supset F^{\prime} \supset . .2 m^{2}
\end{aligned}
$$

$L_{i}=E^{i} / E^{i+1}$, sme def $\operatorname{lr} C_{e}(f)$ as $c_{e}\left(\oplus L_{i}\right)$

Castacton If genval buadles is then as follew.: Splity pranle lemnnai Guen $E / X^{\text {v.b. }}$
then $\bar{Z}: \tilde{X} \rightarrow X$ st.

- $\pi^{*}: C H X \rightarrow C H \tilde{x}$ ingecte

$$
\begin{aligned}
& \text { has a filfatur } \\
& \pi^{\prime} E=\tilde{E}^{0}>\tilde{B}^{\prime}>\ldots>\tilde{E}^{n}=0
\end{aligned}
$$

if you believe this, then hore to hue

$$
\pi^{*} c_{l}(E)=c_{l}\left(\pi^{\kappa} E\right)=c_{l}\left(\theta L_{i}\right)
$$

= detruid hy axian.
$\pi^{f} C_{e}(E)$ uniquly detmise $C_{e}(E)$.
PA af sp. lemmen (sletch)
mouct au rank $E \operatorname{crk} 1 \sqrt{ }$)
ingeral, gren E / X
$\mathbb{P}(E)$

$$
\stackrel{d}{x}
$$

$$
\underset{\mathbb{R}(E)}{\theta(-1)} \rightarrow \underset{(E \text { der aquice })}{E_{\mathbb{P}(E)} \rightarrow T_{R(E) / x}}
$$

 $v \in E, \ell \subset E\}$
$\begin{array}{lll}\mathbb{P}(\square) & \downarrow & \ell \subset E \\ \mathbb{P}(E) & \ell & \end{array}$

