As usual, tadez we finish the pronft of MS.
Reall: Ingradierts:

$$
\begin{aligned}
& \text { [} \mathrm{H} 9 \mathrm{O} \mathrm{~K}_{2} \\
& E_{/ F \text { cyclie dy } p \operatorname{Gal}(E / F)=\langle\sigma\rangle} \\
& K_{2}(E) \xrightarrow{-1} K_{2}(E) \xrightarrow{N_{E F} K_{2}(F)} \text { Climiexact } \\
& {\left[\begin{array}{ll}
H 900 & M S \\
\text { chsF } X_{n}(F) / n K_{2}(F)
\end{array} \stackrel{\sim}{\leadsto} H^{2}\left(F, \mu_{n}^{\omega_{2}}\right)\right]}
\end{aligned}
$$

$\frac{\text { Last trei }}{L / F \text { feldext. }} V(L)=\frac{\operatorname{kar}\left(N_{\text {Eal/L }}\right)}{i m(\sigma-1)}$
Shored (2 techers ag O°) if F preto p cloned

$$
\begin{aligned}
& \text { \& } N_{E / F}\left(E^{*}\right)=F^{*}+\text { len } \\
& V(P)=0 \quad \text { (W90 tre) }
\end{aligned}
$$

Shared Latter if L/E preto $p \Rightarrow V(L)$
Stated. gree $b \in F^{+}$and if $E=F([\sqrt{a})$ and $S B\left((a, b)_{p}\right)=$ Somi-Brans raty fo $(a, b) p$
$\left.\begin{array}{l}\text { if ve let } F_{b}=f f\left(\operatorname{SB}\left((a, b)_{e}\right)\right) \\ \text { then } b \in N_{E \in F_{b} / F_{b}}\left(\left(E B F_{b}\right)^{*}\right)\end{array}\right\} \begin{gathered}\text { ilassical } \\ \text { dinsion } \\ \text { aytu } \\ \text { thy }\end{gathered}$.
Qutlined: Assmy $V(F) \longleftrightarrow V\left(F_{b}\right)$
ve canstrated "Markyye-Tar" by inductroly passy to all ff's of $V\left(F_{b}\right)^{\prime} s$ similarmandy \therefore all prouto peats.
ω reduce to care F gred i cland $\lambda_{i} N_{E / F}$ sujecte to P^{x}

Missy stp: $V(F) \longleftrightarrow V\left(F_{b}\right)$
For tody $\quad X=\operatorname{SB}((a, b),) \quad F_{b}=F(x)$

$$
\begin{aligned}
& K_{2}(E(x)) \stackrel{o-1}{\sim} K_{2}(\underset{r}{F}(x)) \xrightarrow{N} K_{2}(F(x)) \\
& K_{2}^{1}(E) \xrightarrow{\sigma-1} K_{2}^{(F)} \xrightarrow{N} K_{2}(\hat{F})
\end{aligned}
$$

suppase wo $K_{2}(E)$

$$
\text { sit. } N(\omega)=0
$$

and $u_{E(x)}=(\sigma-1)(v)$ $v+k_{2}(E(x))$
$V(E)=0 \quad$ (fiture agadra)

$$
K_{2}(E \infty E) \rightarrow K_{2}(E \in E) \rightarrow K_{2}(E)
$$

$$
E \otimes E=\frac{p}{11} E
$$

wTS: $u=(\sigma-1)(v)$

$$
K_{2}(\Pi E)=\Pi K_{2}(E)
$$

as in f suppax $\sigma(v)-v=u_{E(x)}$
Considr the BGQ ss's

$$
\begin{aligned}
H^{(}\left(X, K_{2}\right) & \Rightarrow K_{2}(X) \\
\downarrow & \downarrow \\
H^{2}\left(X_{E}, K_{2}\right) & \Rightarrow K_{2}\left(X_{E}\right)
\end{aligned}
$$

loak at $E_{1}-p y \gamma \quad K_{c}(E C A)$

$$
\begin{aligned}
& K_{2}\left(X_{E}\right) \quad N_{u}=0 \quad \bar{u}_{E(X)}=0 \text { in } V(F(x)) \\
& u \in K_{2}(E) \text { mery } u_{E(x)}=\sigma v-v \\
& K_{2}(E) \quad u \in K_{2}(E) \text { merg } u_{E(A)}=\quad v \in K_{2}(E(x))
\end{aligned}
$$

*

$$
\begin{aligned}
& \operatorname{Spec} E(X) \rightarrow X_{E} \rightarrow \underset{\sim}{\text { Spec }} E \\
& \begin{aligned}
K_{2}(E) \\
K_{\text {complex }}^{K_{2}\left(X_{E}\right) \rightarrow K_{2}(E(x)) \rightarrow K_{1}\left(E_{(x)}\right)} \\
\Rightarrow d_{1}\left(u_{E(x)}\right)=0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad u_{E(x)}=\sigma(v)-v \\
& \text { LGalois actom is } \\
& \text { comp. wh ss.my) } \\
& d_{1} \downarrow d_{1} \\
& 0 \\
& \sigma\left(d_{1} v\right)=d_{1}(r) \\
& d_{1}(v) \in \underset{\operatorname{xox}_{E}^{(1)}}{\prod_{0}} E(x)^{*} \\
& \Rightarrow d_{i v}=w_{E} \\
& w \in \frac{\| F(x)^{*}}{x \in x^{(1)}} \\
& d_{1}(N) \quad \sigma \text {-imerat } \Rightarrow
\end{aligned}
$$

in fect: sine $d_{1} d_{1} r=0$

$$
\begin{aligned}
& d_{1}\left(w_{E}\right)=0 \\
& { }^{\prime \prime} \\
& (d, w)_{E} d_{i} w
\end{aligned}
$$

$$
\begin{aligned}
& K_{2}\left(F(X) \rightarrow \omega_{\omega^{6}} \frac{11}{x \in X^{(1)}} K_{1}(F(x)) \rightarrow \frac{11}{x_{0 \in} X^{(2)}} K_{0}(F(x))\right.
\end{aligned}
$$

sa w repesents a closs in $H^{1}\left(X_{z r}, K_{2}\right)$ (by Gerston can j)
$A \frac{(\text { lam }}{\left.C_{\text {are }}+\text { to }\right)} H^{\prime}\left(x, K_{2}\right) \longrightarrow H^{\prime}\left(X_{E}, K_{2}\right)$ is rate
but $\bar{w} \in H^{\prime}\left(X, K_{2}\right) \mapsto 0$ in $M^{\prime}\left(X_{E}, K_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \bar{w}=0 \Rightarrow w=d_{1}\left(v^{\prime}\right) \\
& v^{\prime} \in K_{2}(F(x)) \\
& u_{E(x)}=\sigma(v)-v \\
&=\sigma\left(v-v_{E}^{\prime}\right)-\left(v-v_{E}^{\prime}\right)
\end{aligned}
$$

and $d_{1}\left(v-v_{E}^{\prime}\right)=d_{1} v-w_{E}$
$=0 \quad b_{y}$ choice of w

$$
d_{1}\left(v-v_{E}^{\prime}\right)=0 \quad v-v_{E}^{\prime} \in K_{2}(E(x))
$$

$$
\begin{aligned}
& O \rightarrow K_{2}(E(X)) \rightarrow \Perp K_{1}() \cdots \\
& r v_{6} \\
& \begin{aligned}
v-v_{E}^{\prime \prime} \epsilon^{\prime \prime} H^{\prime}\left(X_{E}, K_{2}\right) & \begin{array}{c}
\text { ain } \\
K_{2}(E)
\end{array}
\end{aligned}
\end{aligned}
$$

$\left[\begin{array}{l}C l \\ x \\ \end{array}\right.$
Claim 2: $H^{0}\left(X_{E}, K_{2}\right) \simeq K_{2}(E)$

$$
\begin{aligned}
& \\
& \\
& K_{2}\left(X_{E}\right) \\
& E=F\left(P_{a}\right) \\
&E)= S B\left(M_{P}(E)\right) \\
&= \mathbb{P}_{E}^{P-1}
\end{aligned}
$$

$$
X_{E}=S B\left((a, b)_{e}\right)_{E} \quad E=F(p \sqrt{a})
$$

$$
=S B\left((a, b)_{e} \alpha_{p} E\right)=S B\left(M_{p}(E)\right)
$$

ie. $\exists \tilde{v} \in K_{2}(E)$ at. $\quad \tilde{v}_{E(x)}=v-v_{E}$

$$
\begin{aligned}
& ((\sigma-1) \tilde{v})_{E(x)}=(\sigma-1)\left(v-v_{E}\right)=(v-1) v=u_{E(x)} \\
& H^{0}\left(X_{E}, K_{2}\right)=K_{2}(E) \\
& H^{0}\left(\lambda_{E}, K_{2}\right) \\
& \text { 〔 } \\
& K_{2}(E(x)) \\
& (\sigma-1) \tilde{v}-u \in K_{2}(E) \\
& \text { I } \operatorname{H}^{\circ}\left(\begin{array}{l}
2 \\
K_{2} \\
s
\end{array}\right] \\
& 0 \quad \xi_{0}(E(x))
\end{aligned}
$$

