Part 1
($B \in Q$ ets)

Part 2
(Sevri-Bans theto)

Remindo it Exact cayles

$$
\begin{aligned}
& D \xrightarrow{\alpha} D \text { in practe } D=\oplus D^{p, q} \\
& \text { exad } E^{2} \quad{ }^{2} \text {, deired cauple } \\
& \alpha D \xrightarrow{\alpha^{\prime}} \alpha D \\
& \text { couple } \\
& \beta \gamma=d: E \longrightarrow E \\
& \text { o「 }{ }_{\text {HE }} \\
& \alpha^{\prime}=\left.\alpha\right|_{a D} \\
& \hat{\beta}=\beta \circ \alpha^{-1} \quad \gamma^{\prime}=\bar{\gamma}
\end{aligned}
$$

$$
\begin{aligned}
& D_{1} \rightarrow D_{1} \\
& E_{n} \rightarrow D_{n}=\frac{k i l}{i n d_{n-1}}
\end{aligned}
$$

fo us, rel st wi l $E_{1}=\omega E_{1}^{P c q}$

$$
D_{1}=\theta D_{1}^{18}
$$

$$
K_{n-1}\left(m(x)^{p+1}\right) \rightarrow
$$

$$
n=-p-q q=p-n
$$

in this context: Set $A^{n}=\lim _{q} D^{n-q, q}=K_{-n}\left(m(x)^{\circ}\right)$

$$
G_{-n}(x)
$$

$$
\ldots ?
$$

$$
\begin{aligned}
& D_{1} \xrightarrow{(1,-1)} D_{1} \\
& D_{1}^{P / 6}(x) \\
& (1,0)<E_{E^{\prime}}(0,0) \\
& k_{-p-q}\left(m(x)^{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& K_{n}\left(m(x)^{p+1}\right) \rightarrow K_{n}\left(m^{\prime \prime}(x)^{p}\right) \rightarrow \underset{x \in x^{(p)}}{ } K_{n}\left(k_{k}^{\prime \prime}(x)\right)
\end{aligned}
$$

puachlue: get a canngent $s S$. (see Siniivas Appulir C)

$$
E_{1}^{p, \delta}=\bigoplus_{x \in x^{(p)}} k_{-p-q}(k(x)) \Rightarrow G_{-p-q}(x)
$$

filtration on $G_{n}(x)$ is greu by

$$
\begin{array}{r}
F^{p} G_{n}(x)=i m\left(K_{n}\left(m(x)^{p}\right) \rightarrow K_{n}(m(x))\right) \\
G_{n}^{\prime \prime}(x)
\end{array}
$$

iadued by $m(x)^{p} \rightarrow m(x)$
clises.
a-) $F^{P} G_{0}(X)=$ gen h_{y}^{N} sheres $f . n X$
whose sipport has cedim $\geqslant P$

Let ts take a look

$$
\begin{aligned}
& E_{1}^{p, o} \longrightarrow E_{1}^{p+1, \%} \\
& E_{1}^{0,0} \rightarrow E_{1}^{1,0} \\
& \underset{x \in\left(X^{(0)}\right)}{K_{0}(K(x)) \quad \underset{x \in x^{(1)}}{\otimes} K_{-1}^{\prime \prime}(k(x))}
\end{aligned}
$$

$$
E_{1}^{p+r} \neq 0 \text { if }-p-q \geqslant 0 \quad p+q \leq 0
$$

$$
\underset{x \in X^{(0)}}{ } \mathbb{Z}[x]
$$

\& $k(x)^{*}$ $x \in X^{(0)}$

$$
\underset{x \in X^{(0)}}{\oplus} K_{2}(k(x)) \longrightarrow X_{x \in X^{(1)}} k(x)^{*} \xrightarrow{d N} \bigoplus_{x \in X^{(2)}}^{\mathbb{Z}(x)}
$$

Right hand toms gie: $\quad E_{2}^{n,-n}=C H^{n}(x)$

$$
\operatorname{cakr}\left(\underset{x \in X^{(n-1)}}{\oplus k^{\prime \prime}(x)^{x}} \rightarrow \underset{x \in X^{(n)}}{\mathbb{Z}(x)}\right)
$$

quath intring abservatoni consedr the graded pieces

$$
E_{\infty}^{P,-P}(x) \simeq F^{F^{P} G_{0}(x)}
$$

quatunts of
$E_{1}^{p_{1}-P}(X)$

$$
C H^{P}(X)
$$

ffacti krrel.f

$$
\begin{aligned}
& \text { jacti krrel.f } \\
& \operatorname{CH}^{p}(x) \rightarrow \frac{F^{p} G_{0}(x)}{P^{p+1} G_{0}(x)} \\
& \text { is trsion. }
\end{aligned}
$$

$$
\text { fo } p=1, \quad E_{2}^{1,-1}=E_{\infty}^{1,-1}=\frac{F^{\prime} G_{0}(x)}{F^{2} G_{0}(x)}
$$

Qre more remok
Congectue (Costen) if X is S pr A A lacaly
argmented nouls d imd
ther He camplex f E_{1} terms

$$
\begin{aligned}
& \text { ter the camplex } \\
& \bigoplus_{x \in X^{(0)}} K_{n}(k(x)) \rightarrow \bigoplus_{x \in X^{(1)}} K_{n-1}\left(n(\lambda) \rightarrow \ldots \bigoplus_{x \in X^{(d)}} K_{n-d}(k(x))\right. \\
& y_{0}
\end{aligned}
$$

$K_{n}(x)$ isexact, (tre fo lacalyg.t. mulorschems ares filds by Quillen, meyewally Brez.chr ygler gs hy Pawin)
consquere of this: get a flasque resouton afthe Zrisko sleaf

$$
\begin{aligned}
& K_{n}: u \rightarrow k_{n}(u) \\
& 0 \rightarrow K_{n} \rightarrow \mathcal{E}_{n, 0} \rightarrow J_{n, 1} \rightarrow \ldots
\end{aligned}
$$

$$
\begin{aligned}
g_{n, p}= & \bigoplus_{x \in X(P)} i_{k} \\
& \quad K_{n}(k(x)) \\
& i: S_{p c c} k(x) \underset{\text { inderien. }}{\rightarrow X}
\end{aligned}
$$

Consergene of Corsten conecte

$$
E_{2}^{p_{i \theta}}(X)=H^{p}\left(X_{z a r}, K_{-q}\right) \sigma
$$

ingotiouls $E_{2}^{P_{1}-P}=C H^{P}(X)$

$$
\text { "Blach's } \quad H^{P}\left(X_{z r}, K_{p}\right)
$$

K-cohomaloy grays

Bnet Deyressian
Sowri-Brawr Veretus
Det A cental smile alghtra or F is an F-aly A sad. $A \propto_{F} \simeq M_{n}\left(F^{s}\right)$ soven.
$n=d y A$
$F^{3}=$ segorable
i.e. "forms of matix alyborss

Considr ideals of $M_{n}(F)$
right
exerurse: eny nght ideal $I \Delta_{r} \operatorname{End}(V)$ is of the form $\operatorname{Hom}(V, W) \subset E n d(v)$ sare WCV.
i.e. \exists hijecton $\{W<V\} \longleftrightarrow\left\{I \sigma_{r}\right.$ Eud $\left.(0)\right\}$ rideds.
(colums in W) suhspues

$$
\operatorname{dim}_{F} I=(\operatorname{dim} w)(\operatorname{dim} V)
$$

Obsone: for any f.d. aly A, ideals of dind
frms a soblveret af $\operatorname{Gr}(d, A)$ dand $R I_{d}(A)$
and if A is CSA, cansedr $R I_{n}(A)$

$$
\operatorname{dy} \hat{n}=\sqrt{\operatorname{dim}_{F} A^{R}}
$$

is a sobue of $\operatorname{Gr}(n, A)=\operatorname{Gr}\left(n, n^{2}\right)$
F^{s}-pts: $R I_{n}(A)\left(F^{s}\right)=R_{n}\left(A Q_{F} F^{s}\right)\left(F^{s}\right)$

$$
n \cdot 1=n-\operatorname{din}^{\prime} l d \cdot \operatorname{dud}, f A \Leftrightarrow F^{5} \simeq M_{n}\left(F^{\prime}\right)
$$

1 dim'l suspues of $\left(F^{s}\right)^{n}$

$$
R I_{n}(A)_{F^{s}} \simeq \mathbb{P}_{F^{c}}^{n-1} \mathbb{P}_{F^{s}}^{n-1}
$$

Def $S B(A)=R I_{n}(A)$
"Semi-Branr" Vorety
Châtelet a a 950

