

$$
\leadsto N Q C \sim|N Q C|
$$

exact categny

$$
\begin{aligned}
& \text { aditite } \\
& \text { cat }
\end{aligned}
$$

$$
K_{n}(C)=\pi_{n+1}(B Q C)
$$

Q : what daes this hue t Do with anythy re've bentalley ahut?
["A": well sar sare ty about $K_{0}(C)$ us. π. (BQC)
[Nexdi methads fo work wi $\mathrm{Kan}_{\mathrm{n}}(\mathrm{C}$)'s.
main method: locals-tru- / devissage
Brown-Grote-Gilten SS.
well show (unde mild assumtens X yoler var (fidd)
considr groolat on $X($ zaisknitp)

$$
\begin{aligned}
& K_{n}: u m \\
& H_{z a}^{n}\left(x, K_{n}\right)=K_{n}(u) \\
&=C H^{n}(x)
\end{aligned}
$$

get relata of $\mathrm{CH}^{n}(x)$! singuotent of $K_{0}(x)$
today: lacalyatu-(devissye)
"Recall" C Abelian catyon BCC fill $A b$. sbluatgany, ve say B is a Seme shlcat (thick) if its cloxa ouds suhabjects, quatuets certasions

$$
\begin{aligned}
& \text { i.e.sions } \quad a \in B, b \rightarrow a \text { subabject (monic) } \\
& \Rightarrow b \in B \\
& =a \in B, a \rightarrow b \text { epic } \Rightarrow b \in B \\
& =a, c \in B, 0, a \rightarrow b \rightarrow c \rightarrow 0 \text { exadinC } \\
& \Rightarrow b \in B .
\end{aligned}
$$

in this care, can defer a quotentartor 7

$$
C / B \text { with a fuob }
$$

$$
C \rightarrow C / B
$$

Concuetely. $a b(C / B)=a b(C)$

$$
\operatorname{Hom}_{C / B}(a, b)=\operatorname{Hom}_{C / B}\left(a^{\prime}, b\right)
$$

$\operatorname{Hom}\left(a, b^{\prime \prime}\right) \quad C / B$
$a^{\prime} \hookrightarrow a$ s.ch that $a / a \in B$

$$
b \rightarrow b^{\prime} \text { s. } k \in \in B
$$

$$
\operatorname{Hom}_{C_{B}}(a, h)=\lim _{\substack{a_{a}^{\prime}, b^{\prime} \\ a, s h-t}} \operatorname{Ham}_{U_{B}}\left(a^{\prime}, b^{\prime}\right)
$$

$\mathrm{P}_{\mathrm{y}}^{\mathrm{g}} \mathrm{g}$
ex $C=R$-mads R comm. ry.
$f \in R . \quad B=$ shat if R-mads
Tor's(f) killed by some pars fl.

$$
\begin{array}{r}
u \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0 \\
\text { if } \exists n \text { s.l. } f^{n} M^{\prime \prime}=0 \\
f^{n} M \subset M^{\prime} \\
\text { if } \exists m \text { ct } f^{m} M^{\prime}=0 \\
f^{n+m} M=0
\end{array}
$$

Claim:

$$
\begin{aligned}
& R-\text { mad } / \operatorname{Tuss}(t) \stackrel{\stackrel{e q}{\sim} R_{p}^{-m o d s}}{\rightleftarrows \int_{R-m a d}^{c}} \\
& \text { M, N } \\
& R-\operatorname{mad} \xrightarrow{{ }^{-}-} R_{1} \cdot \operatorname{mad} \\
& >R_{\text {mad }} / \frac{R_{\text {Task }}(f)}{} \\
& \operatorname{Hom}_{(N)}(M, N) \Rightarrow \operatorname{Hom}_{R_{f}}\left(M_{f}, N_{f}\right)
\end{aligned}
$$

if C, \bar{C} Ab.cats, $B<C$ Sere

$$
\text { an } F: C-\bar{e}
$$

addite xil.

$$
F(h)=0 \quad \operatorname{lr}-l l
$$ $b \in B$

Her 7! funt

$$
C \xrightarrow[C / B]{C / B \rightarrow \bar{C} \text { sil. }}
$$

Mare genortly, if X schere, $U \subset X$ ogen $Z=X \backslash U$ then a_{z} idealsht in θ_{X} an θ_{x}-and $M_{\text {is }} Z \cdot f$ sin of M_{x} is $\left(d_{z}\right)_{x}$ trown all $x \in X \quad M_{x} / \theta_{x_{\mu}}$.

$$
\begin{aligned}
& \uparrow \\
& \operatorname{Hom}_{R}\left(M^{\prime}, N^{\prime}\right) \rightarrow \operatorname{Hom}_{R}\left(M_{f}^{\prime}, N_{f}^{\prime}\right) \\
& 6 \\
& \begin{array}{l}
N^{\prime \prime} \rightarrow N \rightarrow N^{\prime} \rightarrow 0 \\
f-U_{\text {s. }}
\end{array} \\
& \text { fits } \\
& \left.N_{f} \simeq N_{t}^{\prime} \quad 0 \rightarrow M_{f}^{\prime} \simeq M_{f} \rightarrow C_{0}\right) \rightarrow 0
\end{aligned}
$$

and then $\theta_{F}-M_{\text {od }} / Z$ tr s $\simeq \theta_{u}-\bmod$
$($ Con $)$
Nate: if M an θ_{7}-mad

$$
\operatorname{sopp} M=\left\{x_{x} X \mid M_{x} \neq 0\right\}
$$

ann M ideal shun $m \theta_{x}$
defied as $\operatorname{amc}(\mu)(U)=\left\{s c \theta_{\lambda} \mid s M_{0}\right)$

$$
\begin{aligned}
& X=\mathbb{A}_{\mathbb{Q}}^{\prime} \quad \mathbb{C}[x] \quad M=\mathbb{C}[\mathbb{C}] / x^{2} \\
& \text { sep } M=(x) \quad M_{\Delta G A T}(x)=0 \\
& (M)=\left(x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 0_{0}^{\prime \prime} \quad x \in((x) a t a)^{*} \\
& \theta_{x}-\text { mad } / \theta_{x_{1} \text { spp on } z} \simeq \theta_{x \backslash z^{-m d}} \\
& 0 \rightarrow m_{z}^{\prime} \rightarrow \theta_{x} \mu \rightarrow \theta_{u}-m \cdot l \rightarrow 0
\end{aligned}
$$

Well show/state:
get amap $B Q\left(\theta_{x}\right.$ add $) \rightarrow B Q\left(\theta_{u^{-a n d}}\right)$
al hamafly fith $B Q\left(M_{z}\right)$
Nertingrebent:
"Devissage": $\Rightarrow B Q\left(m_{z}\right)$ hom. to

$$
B Q\left(\theta_{z-m d}\right)
$$

Main tools weill make use at
Localizaton:
If C an $A b$ cat, $B C C$ Serve subcat Hen $B Q C \rightarrow B C(C / B)$ is a hom. ham. filus $B G B$.

Resalution.
If C, C^{\prime} exact cats $C \subset C^{\prime}$ full subhert s.t. claxd undr extusous and supace beach $c^{\prime} \in C^{\prime} \exists$ a resoluton

$$
\underset{0 \rightarrow c_{n} \rightarrow c_{n}}{c_{n}^{\prime} \in c^{\prime} \rightarrow \ldots \rightarrow c_{0} \rightarrow c^{\prime} \rightarrow 0}
$$

Hon $B Q C \rightarrow B Q C$ ham. equivalere.
nes $\Leftrightarrow c_{i+1} \rightarrow c_{i}$ fat as $c_{i+1} \rightarrow d_{i} \rightarrow c_{i}$ $\underset{\text { epi }}{\text { adm. }} \underset{\substack{\text { adm } \\ \text { anco }}}{T}$
\&us in ambent ah cot
equiu. (samewhat hetfor)

Car: if X is ryuso varity then

$$
X \text { is ryuld vany } K_{n}(\operatorname{Cok}(x)) \simeq K_{n}(\operatorname{locfree}(x))
$$

Dévissuge if $B \subset A$ follsishcat. A Al.cat closed undr sohahjects, quaterts, frite paduds. such that $\forall M \in A, 7$ finte filtration

$$
\begin{aligned}
& \text { that } \forall M \in A \subset M_{0} C M_{1} c \ldots \subset M_{n}=M \text { with } \\
& \Rightarrow \\
& \Rightarrow B Q B \rightarrow B Q A
\end{aligned}
$$

hom equiv.
Cor: $z \rightarrow X \quad m_{z}=e_{z}$-trom coh slues

$$
\begin{aligned}
& \left(\theta_{z} \text {-mad }\right) \rightarrow m_{z} \\
& \Rightarrow B Q\left(\theta_{z}^{\text {mad }}\right) \underset{e_{z}}{\sim} B Q\left(m_{z}\right)
\end{aligned}
$$

ey. if Ml_{y}. I^{n} trsisinad $\ldots \mathrm{w}$

$$
\begin{aligned}
& \text { (I- pouer trsim madr) }>\left(R_{1 I} \mathrm{mad}\right) \\
& 0=I^{a} M \subset I^{n-1} M C \ldots C I M \subset M<0 \\
& I^{0} M / I^{\text {in }} \boldsymbol{M} \text { I-tran. }
\end{aligned}
$$

