Also, molth where:

$$n s(\overline{g}) m s(\overline{h}) = n s(\overline{g}) m s(\overline{g})^{-1} s(\overline{g}) s(\overline{h})$$

 $= n inn_{s(\overline{g})}(m) \nu(\overline{g},\overline{h}) s(\overline{g},\overline{h})$
So, need to know the inner action of $s(\overline{g})$ on
N.
 ν holds most of the complications, can't be
arbitrary, but need to satisfy associately
 $s(\overline{g}) s(\overline{h}) n = \nu(\overline{g},\overline{h}) s(\overline{g}\overline{h}) n$
 $= \nu(\overline{g},\overline{h}) s(\overline{g}\overline{h}) n$
 $s(\overline{g}) \overline{h}(n) s(\overline{h})$
 $\overline{g} \overline{h}(n) s(\overline{g}) s(\overline{h}) = \overline{g} \overline{h}(n) \nu(\overline{g},\overline{h}) s(\overline{g}\overline{h})$

$$So \left[\nu(\overline{q},\overline{h}) \overline{q}h(n) = \overline{q}h(n) \nu(\overline{q},\overline{h}) \right]$$

$$s(\overline{q})s(\overline{h})s(\overline{L}) = s(\overline{q}) \nu(\overline{h},\overline{L})s(\overline{h}\overline{L})$$

$$\nu(\overline{q},\overline{h}) s(\overline{q}\overline{h})s(\overline{L}) = \overline{g}(\nu(\overline{h},\overline{L}))$$

$$\nu(\overline{q},\overline{h}) s(\overline{q}\overline{h})s(\overline{L}) = \overline{g}(\nu(\overline{h},\overline{L}))$$

$$\nu(\overline{q},\overline{h}) s(\overline{q}\overline{h},\overline{L}) = v(\overline{q},\overline{h}) s(\overline{h}) s(\overline{h}\overline{h})$$

$$\leq \nu(\overline{g},\overline{h})\nu(\overline{g},\overline{h},\overline{L}) = \overline{g}(\nu(\overline{h},\overline{L}))$$

$$\nu(\overline{g},\overline{h}\overline{L})$$

Complicate factors

$$s(\bar{g})=(\bar{h}) \neq s(\bar{g},\bar{h})$$

leads to the ν 's ξ also the
irritate but that
 $inn_{s(\bar{g})s(\bar{h})} \neq inn_{s(\bar{g},\bar{h})}$

(n,h) w mill.
$$(n,h)(n,h') = (n \varphi_n(n'), hh')$$

The TFAE Green G, H, N
1) G \cong N'× H'
2) \exists N \cong G, N \cong N' and G/N \cong H'
and s: $G/N \cong$ G a hom. s.l. $G/N \cong G \cong G/N$
3) \exists N \cong G, H \leq G \cong N \cong N', H \equiv H'
s.l. NH = G and NnH = (e)

$$\frac{pf'}{2 \Rightarrow 3} \text{ weall } |NH| = \frac{|N||H|}{|NOH|} = \frac{nd |N||H|}{by 2}.$$

3⇒1 1