Advanced Calculus II, Fall 2022, Worksheet for Lecture 9

Instructor: Danny Krashen

Name:

Discussing the problems with other people is encouraged, but you must write up your own work independently!

1. Suppose (a_n) is a sequence in a metric space X with no convergent subsequences. Show that for each n, there exists some $\epsilon = \epsilon_n > 0$ such that $B_{\epsilon}(a_n)$ contains no other point $a_m, m \neq n$ in the sequence.

2. Let $f : \mathbb{Z} \to \mathbb{R}$ be an arbitrary function. Using the standard metric on both \mathbb{Z} and \mathbb{R} given by

$$d(x,y) = |x - y|,$$

show that f is continuous.