
whats the dimensen it a set at genomas fra gren spases?

heherge cavery lemmai
Supare $X$ is a metic sgae an $K c X$ is sequentislly compact, then for evy apencorering d $k\left\{U_{\lambda}\right\}_{\partial I I}$ $\exists \delta>0$ such that forey $k \in K, \exists \lambda \in I$ st.

$$
B_{\gamma}(l) \subset U_{\lambda}
$$

Main thearem fr tody: If $X$ a mete sgace, then $K C X$ is campact if $a_{n}$ D anl $y$ if it's sequentially comgned.
PC: Assume $K$ compact, $\left(x_{n}\right)$ a sequeve in $K$ wTs $\exists$ conngent sohselence. i.e. $\exists x \in K$ r.t. saque accumulates wer $x$.

Assure (hy contradicton) that $\forall x \subset k, \exists \varepsilon_{x}>0$ a.t. $x_{n} \& B_{\varepsilon_{x}}(x)$ if $n$ sutfienth (inge.

$$
\left[\begin{array}{l}
\text { i.e. suppare } \forall x \in K, \exists \varepsilon_{x}>0, N_{x} \text { s.t. } \\
\text { of } n \geqslant N_{x}, x_{n} \notin B_{\varepsilon_{x}}(x) \text {. } \\
\text { nis imnosille: }
\end{array}\right]
$$

$P$ e that $R$ is impassilule:
Cousdes open ats $B_{\varepsilon_{x}}(x)$ fo $x \in K$ thes cow $k$.
Sne $K$ is compact, Ifinte subcollectre thert caws i.e. pts $k_{1}-\cdots k_{r} \in K$
s.t. $\bigcup_{i=1}^{\dot{1}} B_{\varepsilon_{k}}\left(K_{i}\right)$ cour $K$.

$$
\Rightarrow\left(x_{n}\right) \subset K \subset \bigcup_{i=1} B_{q_{k_{i}}}\left(k_{i}\right)
$$

$\Rightarrow \exists i$ st. $B_{\varepsilon_{k i}}\left(k_{i}\right)$ contens infinity vary toms inuy xey.
hy $\operatorname{lop}, B_{\varepsilon_{k_{i}}}\left(k_{i}\right)$ ant cortains it mast $N_{k_{i}}$ trm $)$ y
$\Rightarrow \exists x \in K$ s.l. $\forall \varepsilon>0 \quad B_{\varepsilon}(x)$ contains soly many terms in sequere $\left(X_{n}\right)$.
$\Rightarrow$ Эconugut culss. (top py 255 volI)

Convely, suppare $K$ is se zentally compcet wts: K carpuct.
Consides same apen cous $U_{\lambda}, \lambda \in I$ of $K$. By leb. CL caver has a leberge $\# \delta>0$. suppose $\nexists$ finite sulhavery.
constrect a seqere as folloos:
chocse $x_{1} \in K$ at randam. then $B_{\delta}\left(x_{1}\right) \subset U_{\lambda_{1}}$ save $\lambda_{6} \in I$.
Bot $U_{\lambda_{1}} \ngtr K$
sa $\exists x_{2} \in K \backslash U_{\lambda_{1}}$, chaose $B_{d}\left(x_{2}\right)<U_{\lambda_{2}}$
leep goy, at ith step

$$
k \notin u_{\lambda_{1}} v \ldots v u_{\lambda_{i}}
$$

chare $x_{i+1} \in K \backslash\left(U_{\lambda_{1}}, \ldots U_{\lambda_{i}}\right)$

$$
B_{\delta}\left(x_{i+1}\right) \subset U_{i+1}
$$

natice $d\left(x_{i}, x_{i+j}\right) \quad j>0$
then by cons)cet-1 $x_{i, j} \& U_{\lambda_{1}, \ldots,} U_{\lambda_{i}, \ldots} u_{\lambda_{i, 1}}$

$$
\begin{array}{ll}
c=s & x_{i j j} \& U_{\lambda_{i}}>B_{\delta}\left(x_{i}\right) \\
\hdashline \underset{f}{c} & \Rightarrow d\left(x_{i}, x_{i+j}\right) \geqslant \delta
\end{array}
$$

:.e. $\forall i \neq j d\left(x_{i}, x_{j}\right) \geqslant \delta$.
$\Rightarrow$ no convent sulyenere, cantadicty sequantial compretress)

