

Assure (by contradiction) that
$$\forall x \in K, \exists z_{i>0}$$

G.1. $x_n \notin B_{z_n}(x)$ for a subtreatly large.
Tile suppose $\forall x \in K, \exists z_{i>0}, N_x$ st.
for $n \ge N_x$, $x_n \notin B_{z_n}(x)$.
Pl that ϑ is impossible:
Consider open exts $B_{z_n}(x)$ for $x \in K$
there coure K .
Since K is compact, \exists finite subcollection
there coures i.e. pto $k_{1,\dots,k_n} \in K$
sit. $\bigcup B_{z_k}(k)$ coure K .
 $= 7 (x_n) \in K \in \bigcup B_{z_k}(k)$
 $= 7 i s.k.$ $B_{z_k}(k)$ contens infinity may
torus in $y \ge z_i$.
 h_y hyp, $B_{z_k}(k)$ and h_k ; torus
 $= 3 X \in K \le 1.$ $\forall z > 0$ $B_{z_k}(k)$ contains only may
terms in sequence (K_n) .
 $= 3 \exists consignal cutors (1, top 197, 255 unlt)$

-