Def A topolagy an a cet X is a specificatuon of a collectun .f subsats of X, called "open cats" soch that:

1. X, ϕ are ogen
2. Arbitrary unions f open sets are open
3. Fivite intersections If ijeusets are open.

Def A fogoluyical spane is a set X fogethr with a tpolesy in it.
As we'ne seen, gren (X, d) a metic space, we can then detre a topalogy on X by dectary apesi cet $=$ geen ints

$$
\begin{gathered}
\text { i.e. } S c X \text { st } \\
S^{0}=S
\end{gathered}
$$

DR if X is a top syace, $\left(x_{n}\right)$ a seceren ve sy $\lim _{n \rightarrow \infty}^{\text {top }} x_{n}=x$ if $\forall U$ ggen contang $x, \exists N>0$ s.l. whewar $n \geqslant N, x_{n} \in U$

$$
\left(u \longleftrightarrow B_{\varepsilon}(x)\right)
$$

Prop: If X is a metic spue $\left(a_{n}\right)$ is a saene, $a \in X$ then $\lim _{n \rightarrow \infty} a_{n}=a \Longleftrightarrow \lim _{n \rightarrow \infty} p p a_{n}=a$

Pf: Suppare $\lim _{n \rightarrow \infty}{ }^{\text {WP }} P_{a_{n}}=a$ wart to thow $\lim _{n \rightarrow \infty} a_{n}=a$
Choose $\varepsilon>0$, wTs $\exists N>0$ s.t. $n \geqslant N \Rightarrow d\left(a_{n}, a\right)<\varepsilon$
Bydet limetp $\forall U \rightarrow a$ agen $\exists N>0$ s.t. $n \geqslant N \Rightarrow a_{n} \in U$
let $U=B_{\varepsilon}(a)$ ofn $a \in U=B_{\varepsilon}(a)$
so $\exists N>0$ s.t. $n \geqslant N \Rightarrow a_{n} \in U=B_{\varepsilon}(a)$.

$$
\partial\left(a, a_{a}\right)<\varepsilon \quad D^{1 / 2}
$$

Soppon $\lim _{n \rightarrow A} a_{n}=a$ WTS $\lim _{n \rightarrow \infty}{ }_{n \rightarrow \infty} a_{n}=a$
chaser U;a apen. $\Rightarrow U=U^{0} \Rightarrow a \in U^{0}$

$$
\Rightarrow \exists \varepsilon>0 \text { s.t. } B_{\varepsilon}(a) \subset U \text {. }
$$

bydefollim, $\exists N$ st. $n \geqslant N, d\left(a, a_{n}\right)<\varepsilon$

$$
\Rightarrow a_{n} \in B_{\varepsilon}(a) \subset U
$$

thete gren U shaved $\exists N$ sit. $n \geqslant N$

$$
\begin{aligned}
& \text { Le greu } U \text { shared } \\
& U\left(a, a_{n}\right)<\varepsilon \Rightarrow \cdots \Rightarrow a_{n} \in U\left(\text { def of } l_{\text {iom }} \text { top }\right) \\
& \qquad D^{2 / 2} .
\end{aligned}
$$

Main there today: Conuguce, compactuess.

Aside: Completeness
Det If X is a metricspae we say a sqque (an) is Cauchy if $\forall \varepsilon>0 \exists N$ s.t. $\forall i, j \geqslant N$ flen $d\left(a_{i}, a_{j}\right)<\varepsilon$.
Prapi If a secueve (G_{n}) in a metic spe X tlen it is Cavchy.
PA (Illustotry)
gren $\varepsilon>0$ chare N r.t. If $n \geqslant N \quad d\left(a, a_{i}\right)<\frac{\varepsilon}{2}$

$$
\Rightarrow \text { if } i, j \geqslant N
$$

Det X is complete if emy Cauchy spere conurges!
\mathbb{R} complete
Q not complete.

$\forall \varepsilon \& 0 \exists \mathrm{~N}$ at $n \geqslant N$

$$
\Rightarrow \begin{aligned}
& \text { ryaded in } \mathbb{R}^{a_{n} \rightarrow q}
\end{aligned}
$$

Prop: $\mathbb{R}^{n}{ }_{w} /$ Eucliden metic is complete.
Prafi: suppace $\left(\vec{a}_{i}\right)$ is a Cauchy squeve.

$$
\vec{a}_{i}=\left(a_{i, 1}, a_{i, 1}, \ldots, a_{i, n}\right)
$$

Chaim: each seave $a_{1, j}, a_{2 j}, \ldots$. is Cauchy.
Pt: charse $\leqslant>0$

$$
\begin{aligned}
& \text { : chark } \varepsilon>0 \\
& \exists N>0 \text { s.t. } \forall k, l \geqslant N \quad d\left(\vec{a}_{k}, \vec{a}_{l}\right)<\varepsilon \\
& \text { i.e. } \sqrt{\sum_{j=1}^{n}\left(a_{k, j}-a_{l, j}\right)^{2}}<\varepsilon \\
& \sqrt{\sum\left(a_{k, j}-a_{l j}\right)^{2}} \geqslant \sqrt{\left(a_{k, j}-a_{l j}\right)^{2}}=\left|a_{k j}-a_{l j}\right|
\end{aligned}
$$

onty 1 inder
$\exists N>0$ sit. $\forall k, l \geqslant N,\left|a_{k j}-a_{l j}\right|<\varepsilon$
\Rightarrow compavent sqeus are Cacchy!
\Rightarrow Hey each conge (becuse \mathbb{R} is coyllete)

$$
\lim _{i \rightarrow \infty} a_{i, j}=b_{j} \in \mathbb{R}
$$

now, claim $\vec{a}_{i} \rightarrow \vec{b}=\left(b_{1 c} \ldots, b_{n}\right)$

Chance $\varepsilon>0$ want to shaw $\exists N>0$

$$
\text { at } i \geqslant N, d\left(\vec{b}, \vec{a}_{i}\right)<\varepsilon
$$

sine compmats conge, $a_{i j} \rightarrow b_{j}$
freach $j=1,-, n \quad \exists N_{j}$ s.t. $i \geqslant N_{j}$

$$
\begin{aligned}
& d\left(a_{i j}, b_{j}\right)<\frac{\varepsilon}{n} \\
& \left|a_{i j}^{\prime \prime}-b_{j}\right|
\end{aligned}
$$

set $N=\max \left\{N_{j}\right\}$
fr $\quad i>N$

$$
\begin{aligned}
& d\left(\vec{a}_{i}, \vec{b}\right)=\sqrt{\sum_{j=1}^{n}\left(a_{i j}-b_{j}\right)^{2}} \\
& \quad=\sqrt{\sum \frac{\varepsilon^{2}}{n^{2}}}=\sqrt{\frac{\varepsilon^{2}}{n}}=\frac{\varepsilon}{\sqrt{n}}<\varepsilon .
\end{aligned}
$$

If X a metic sjae, $S \subset X$ sulsod, $U_{i} c x$ are othishld nesy u_{i} cow S if $s c \cup u_{i}$
Fs

Conpactuess
sibat $s c x$ of
Ret A metic space is compert if it satisfies eitho of the follong equivalat condituons:

1. ey ogen covery $\left(U_{i}\right)$ of S admits a finik sukery.
r.e. \exists finite set $U_{i_{1}}, u_{i_{2}, \ldots}, U_{i \text { r }}$ which cars.
2. enp cany of S by (open) balls admits a fante subcong.
Def If X is a metic space, a subuet $S C X$ is colled soqentially corpact if ery squme G_{n}) in S $h_{a} s$ a suhe seque $a_{n_{1}}, a_{n_{2}} \ldots$ which connger in S.

$$
n_{1}<n_{2}<\ldots
$$

Theorem $S \subset X$ is compad if and only if it is seqentially compad.
Theorm $S \subset \mathbb{R}^{n}$ is compact if and only if it is clased \&', bounded.

Firot tageti
Prapt if $S C X$ is compuct tlen S is clased ibordel. Partial prosf lilustatom
suppase S is compat. why is it boundd?
Chaas any $a \in X$ WTS $\exists r>0$ sit.

$$
S \subset B_{r}(a)
$$

Consider seconce of balls

$$
B_{1}(a) \subset B_{2}(a) \subset B_{3}(a)
$$

