Pf: Suppose limbPanea want to show lim an=a
Choose 200, WTS IN20 s.l. N2N
$$\Rightarrow d(a_{n,n}) < \epsilon$$

By dif limbP $\oplus U > a open I > 0 s.l. N2N $\Rightarrow d(a_{n,n}) < \epsilon$
let $U = B_{\epsilon}(a)$ open are $U = B_{\epsilon}(a)$
 $co I > 0 s.l. N2N $\Rightarrow a_{n,\epsilon} U = B_{\epsilon}(a)$
 $d(a_{n,n}) < \epsilon D = 0$
 $d(a_{n,n}) < \epsilon = 0$
 $a_{n,r} < D = 0$
 $d(a_{n,r}) < c = 0$
 $d(a_{n,r}) < c = 0$
 $D^{2/2} < 0$$$

Aside: Completeness
Del IR X is a metric spee we say a sequence (an)
is Couchy if Hord IN side HijzN then

$$\lambda(a_i,a_j) < \epsilon$$
.
Proj: If a sequere (an) in a metric spee compose in X
then it is Couchy.
Pt (Illustroom)
gren Z>0 chare Nort. It now $d(a_i,a_i) < \frac{\epsilon}{2}$
 $\Rightarrow if i,j > N$
 $a_i < c_i < a_j$
Det X is complete if eny
Couchy squere converges!
R complete
R complete
R complete
R complete
R complete
 $a_i = 0$
 $f \in i > 0$
 $f = i > 0$
 $f =$

Prop:
$$\mathbb{R}^{n}$$
 w/ Eucliden notic is complete.
Prof.: suppose (\overline{a}_{i}) is a Cauchy area.
 $\overline{a}_{i} = (a_{ij1}, a_{ij1}, \dots, a_{ij})$
Chimi each source a_{ij} , a_{ij} , \dots is Cauchy.
Pt: chark 570
 $\overline{P} N > 0 \ s.(. \overline{P} L, L > N) \ d(\overline{a}_{L}, \overline{a}_{L}) \leq \varepsilon$
i.e. $\sqrt{\frac{2}{5}} (a_{k,j} - a_{k,j})^{2} \leq \varepsilon$
 $\sqrt{\frac{2}{5}} (a_{k,j} - a_{k,j})^{2} \leq \varepsilon$
 $\sqrt{\frac{2}{5}} (a_{k,j} - a_{k,j})^{2} = |a_{k,j} - a_{k,j}|^{2}}$
 $\overline{P} N > 0 \ s.(. \overline{P} L, L > N) \ d(\overline{a}_{k,j} - a_{k,j})^{2} = |a_{k,j} - a_{k,j}|$
 $andy 1 \ inder$
 $\overline{P} N > 0 \ s.(. \overline{P} L, L > N) \ a_{k,j} - a_{k,j}| < \varepsilon$
 $\Rightarrow comparent squares are (suchy!)$
 $\Rightarrow tley each comy (because R is conylet)$
 $\lim_{i \to \infty} a_{i,j} = b_{j} \in \mathbb{R}$
Now, claim $\overline{a}_{i} \longrightarrow \overline{b} = (b_{1}, \dots, b_{n})$

Chank E>O would to show
$$\exists N > o$$

 $z/t \cdot i = N, d(\vec{b}, \vec{a}_i) < \varepsilon$
since comparts conze, $a_{ij} = b_j$
 $french j = 1/-\gamma^n \exists N_j s.t. i = N_j$
 $d(a_{ij}, b_j) < \frac{\varepsilon}{n}$
 $|a_{ij} - b_j|$
 $sd N = Marx \{N_j\}^2$
 $fr i = N d(\vec{a}_i, b) = \sqrt{\sum_{j = 1}^{n} (a_{ij} - b_j)^2}$
 $= \sqrt{\sum_{n = 1}^{n} \frac{\varepsilon^2}{n}} = \sqrt{\frac{\varepsilon^2}{n}} = \frac{\varepsilon}{\sqrt{n}} \frac{\varepsilon}{\sqrt{n}}$
If X a metric sysce, ScX subsed, $U_i cX$ are other subles
we say U_i cow S if Sc UUi
 $V_i = \sqrt{\frac{\varepsilon}{\sqrt{n}}} = \sqrt{\frac{\varepsilon}{\sqrt{n}}} = \frac{x}{\sqrt{n}}$
we say U_i are an open conzerve of Sift Haylow cochopen