
Cleaning afficil det it consignere ; ne say (xu) approcess X
is a metric space X if 400 3N>0 sit. 4n2N,
d(xu,x)<2.
Today: Setur 7.3 (Introduction to topology)
Gren (X,d) and new metric by (X,d)'
d'(x,y) =
$$\frac{1}{2}d(x_7)$$

 $d'(x,y) = \frac{1}{2}d(x_7)$
 $d'(x,y) = \frac{1}{2}d(x_7)$
 $d'(x,y) = \frac{1}{2}d(x_7)$
 $1 else.
Here low to but we do with a metric
but some thigs are affected : in d'' evy set is bounded
consignere is see with the.
We want a freenewert to make serve i consignere
Noughly syesty, we want to indirectual the nation
 $after "edige" or "boundary" of a set
 $S, S' \leq IR$ $S = \frac{1}{2} M_1$ in Z_{20}^2
 0 on bandy is $S' = (0, 7]$$$

Pf: Suppore (Sn) a square is S which comps
to x EXIS. We want to show that S
cannot be a closed sol.
Suppore it is closed, i.e. that XIS is open.
then 3 E20 sit. Be(X) c(XIS)
But this means (Sn) on t actually competent!
because Hn, Sne S so Sn & XIS
$$\Rightarrow$$
 Sn & Be(X)
 \Rightarrow d(X,Sn) $2 \le 1$.
Conversely, suppore that froll cymes (Sn) sit.
in Sn exists in X, we have him Sn eS,
wTS, S is closed. (i.e. XIS open).
Choose XeXIS. want 3 bull of some notis about
X, extretz in XS.
Suppore no such but exists.
for each is 20
Gaussho Byn(X)
by ascurption Byn(X)OS > Sn
 $3 \le 1$

by new lim
$$s_n = x$$
 $\forall z > 0$, $\exists N s.t. n \geq N$
 $choax N > \frac{1}{2}$
 $d(s_{n,x}) < z \vee$
 $s_{ne} B_{y_n}(x) < B_{y_n}(x) = n \geq N$
 $B_{g}(x) \qquad N > \frac{1}{2} \quad N < z$
 $N = 2 \quad Z < z$
 $Y = also = netic space by restrict the netic.
 $Z = C \quad R$
 $T = also = netic space.$$

