3) $\ln (x)=\sum_{i=0}^{n} x^{i} / i!$ an $[0,1]$ examz
shaw is Cavcly w/rlt $\|g\|=\int_{0}^{1} g(x) d x$
wriguen $\varepsilon>0 \quad \exists N>0$ s.t. $n, m \geqslant N$ tlen $\left\|f_{n}(x)-\delta_{m}(x)\right\| \leqslant \varepsilon$.
exanive this quantity:
gien $N>0 \quad n, n \geqslant N \quad\left\|f_{n}(x)-\ell_{m}(x)\right\|$

$$
\left\|\sum_{i=0}^{n} x^{\prime \prime} / i!-\sum_{i=0}^{m} x i / i!\right\|<\varepsilon
$$

wLot assme $n>m$

$$
\begin{aligned}
& =\left\|\sum_{i=m+1}^{n} x^{i} / i^{\prime} \cdot\right\| \\
& =\int_{0}^{1}\left|\sum_{i=m+1}^{n} x^{i} / i!\right| d x \\
& \leq \int_{0}^{1} \sum^{x^{i} / i!\mid d x} \\
& \leq \int_{0}^{1} \sum_{i=m+1}^{n}|1 / i!| d x \\
& =\sum_{i=m+1}^{n} 1 / i!\leq \sum_{i=N}^{n} 1 / i!\leq \sum_{i=N}^{\infty} 1 / i! \\
& \ll l 1,
\end{aligned}
$$

varos absoratuas that $\sum_{i=0}^{\infty} 1 / i!$ con-es

$$
\lim _{N \rightarrow \infty} \sum_{i=N}^{\infty} y_{i!}=0 \Rightarrow \quad \begin{aligned}
& N>0 \\
& \\
& \text { Hen } \sum 1 / i!<\varepsilon
\end{aligned}
$$

4) $\mathbb{R}^{3} \xrightarrow{g} \mathbb{R}^{2} \xrightarrow{h} \mathbb{R}^{3}$
if f^{-1} mion cout diff.
f

$$
\left(f^{-1}\right)^{\prime}(f l x)=\left(f^{\prime}(x)\right)^{-1}
$$

if inve erists $\Rightarrow f^{\prime}(x)$ is aluys inntible.

$$
f(x)=h(g(x)) \quad f^{\prime}(x)=h_{3 \times 2}^{\lambda}(g(x)) g^{\prime}(x)
$$

haw a noll sue to so not meerthe. 1

Advanced Calculus II, Fall 2022, Homework 9

Instructor: Danny Krashen

Discussing the problems with other people is encouraged, but you must write up your own work independently!

1. Suppose X and Y are metric spaces and $\left(f_{n}\right)$ is a sequence of continuous functions. Show that if f_{n} converges uniformly to $f: X \rightarrow Y$, then f is also continuous.
2. Consider the sequence of functions described by $f_{n}(x)=e^{x} \sin (n)$ defined on the interval $[0,1]$. Show that this sequence is uniformly equicontinuous: that is, for every $\epsilon>0$, there exists $\delta>0$ such that for every $n>0$, whenever we have $\left|x_{1}-x_{2}\right|<\delta$ with $x_{1}, x_{2} \in[0,1]$, then we have $\left|f_{n}\left(x_{1}\right)-f_{n}\left(x_{2}\right)\right|<\epsilon$.

Recall f is uniform $\}$ cont if $\forall \varepsilon>0 \exists \delta>0$ st.

$$
\left|x_{0}-x_{1}\right|<\delta \Rightarrow\left|f\left(x_{0}\right)-f\left(x_{1}\right)\right|<\varepsilon \quad \forall x_{0}, x_{4}
$$

If $\left(f_{a}\right)$ a severe, it is untornly equicontrans if $\forall \varepsilon>0 \quad \exists \delta>0$ si. $\left|x_{0}-x_{1}\right|<\delta \Rightarrow\left|f_{i}\left(x_{0}\right)-f_{i}\left(x_{0}\right)\right|<\varepsilon$ all x_{r}, x_{1}, all i.
3. Recall that a sequence of real numbers $\left(a_{n}\right)$ is called absolutely convergent if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. Let X be the set of convergent sequences.
(a) (optional) Show that X is a normed vector space with respect to component-wise addition and scalar multiplication, and with the norm $\left\|\left(a_{n}\right)\right\|=\sum_{n=1}^{\infty}\left|a_{n}\right|$.
(b) Suppose we are given a sequence of elements in X. That is, we have a sequence $\left(x_{i}\right)$ consisting of x_{1}, x_{2}, \ldots with each x_{i} itself a sequence, say $x_{i}=\left(a_{i, n}\right)$. Suppose that $\left(x_{i}\right)$ is Cauchy with respect to the above norm.
i. (required) Show that for each n, the sequence $\left(a_{i, n}\right)$ is convergent (regarded as a sequence in the variable i).
ii. (required) Write $a_{n}=\lim _{n \rightarrow \infty} a_{i, n}$. Show that $\left(a_{n}\right)$ is absolutely convergent. Hint: use $\left|a_{n}\right|=$ $\left|a_{n}-a_{i, n}+a_{i, n}\right| \leq\left|a_{n}-a_{i, n}\right|+\left|a_{i, n}\right|$ for every $i>0$.
iii. (required) Show that $\lim _{i \rightarrow \infty} x_{i}=\left(a_{n}\right)$. Hint: break up the sum $\sum_{n=1}^{\infty}\left|a_{i, n}-a_{n}\right|$ into two sums $\sum_{n=1}^{k}\left|a_{i, n}-a_{n}\right|+\sum_{n=k+1}^{\infty}\left|a_{i, n}-a_{n}\right|$ and choose k to make the second summand small first.
4. Let X be the vector space of polynomial functions of the form $f(x)=a x^{2}+b x+c$ from $[0,1]$ to \mathbb{R}. Consider the following norms on X :

1. $\|f\|_{s}=\sup \{|f(x)| \mid x \in[0,1]\}$
2. $\left\|a x^{2}+b x+c\right\|_{c}=\max \{|a|,|b|,|c|\}$

Show that for a sequence $\left(f_{n}\right)$ in X, we have that $\lim _{n \rightarrow \infty} f_{n}=f$ with respect to the metric given by $\left\|\|_{s}\right.$ if and only if $\lim _{n \rightarrow \infty} f_{n}=f$ with respect to the metric given by $\left\|\|_{c}\right.$.
5. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(x \cos y, x \sin y)$. Does f have a differentiable inverse near $(0,1)$? That is, is possible to find open sets $U, V \subset \mathbb{R}^{2}$ with $(0,1) \in U$ with $f(U)=V$ and a differentiable function $g: V \rightarrow U$ such that $f g=i d=g f$?
6. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$. Does f have a differentiable inverse near $(0,1)$? That is, is possible to find open sets $U, V \subset \mathbb{R}^{2}$ with $(0,1) \in U$ with $f(U)=V$ and a differentiable function $g: V \rightarrow U$ such that $f g=i d=g f$?
7. As in problem 3 let X be the set of absolutely convergent sequences with the norm given by $\left\|\left(a_{n}\right)\right\|=$ $\sum_{n=1}^{\infty} \backslash a_{n} \backslash$ Consider the linear transformation $T: X \rightarrow X$ given by $T\left(a_{n}\right)$ is the sequence $\left(b_{n}\right)$ where $b_{n}=a_{n+1}$. Show that $\|T\|=1$ (the operator norm).
8. As in problem 3 let X be the set of absolutely convergent sequences with the norm given by $\left\|\left(a_{n}\right)\right\|=$ $\sum_{n=1}^{\infty} a_{n}$ Consider the function $f: X \rightarrow X$ given by $f\left(a_{n}\right)$ is the sequence $\left(1 / n a_{n}\right)$. Is f continuous? Is it differentiable? (this is a bit of a trick question).
9. As in problem 3 let X be the set of absolutely convergent sequences with the norm given by $\left\|\left(a_{n}\right)\right\|=$ $\sum_{n=1}^{\infty} a_{n} \backslash$ Consider the function $f: X \rightarrow X$ given by $f\left(a_{n}\right)$ is the sequence $\left(b_{n}\right)$ where $b_{1}=a_{1} a_{2}$ and $b_{n}=a_{n}$ for $n>1$.
Fix an absolutely convergent sequence $\left(c_{n}\right)$.
Let $T: X \rightarrow X$ be given by $T\left(a_{n}\right)=\left(c_{2} a_{1}, c_{1} a_{2}+a_{2}, a_{3}, a_{4}, a_{5}, \ldots\right)$.
(a) Show that T is a linear transformation.
(b) Show that $T=f^{\prime}\left(a_{n}\right)$.
10. Suppose $f: X \rightarrow Y$ is a map between metric spaces such that there exists some real number $L>0$ such that $d(f(x), f(y)) \leq L d(x, y)$. Show that f must be continuous.
11. Suppose $T: X \rightarrow Y$ is linear transformation between normed linear spaces which is bounded. Show that T must be continuous.
12. Suppose $\left(T_{n}\right)$ is a sequence of linear transformations from \mathbb{R}^{3} to \mathbb{R}^{5}. Suppose that $\lim _{n \rightarrow \infty} T_{n}=T$ with respect to the operator norm. Show that for every $v \in \mathbb{R}^{3}$, we have $\lim _{n \rightarrow \infty} T_{n}(v)=T(v)$ in \mathbb{R}^{5}.
13. Consider the set $X=\{1 / n \mid n=1,2, \ldots\}$. Define $d(x, y)=|x-y|$.
(a) Is X a metric space with respect to this metric?
(b) Is X complete?

$$
\begin{aligned}
& f\left(f^{-1}(x)\right)=x \sim\left(f \cdot f^{-1}\right)^{\prime}(x)=(1 d)^{\prime}(x) \\
& f^{\prime}\left(f^{-1}(x)\right) \cdot\left(f^{-1}\right)^{\prime}(x)=I d \\
& \left(f^{-1}(f(x))\right)^{\prime}=\left(f^{-1}\right)^{\prime}(f(r)) f^{\prime}(r)=I d
\end{aligned}
$$

if f^{-1} exists and is 2 ifthenturlle at $t(0,1)$ then $f^{\prime}(0,1)$ is inm-ible

$$
\begin{aligned}
& \underbrace{\left(f^{-1}\right)^{\prime}(f(0,1))}_{i=n} \cdot \underbrace{f^{\prime}(0,1)}_{m-k)}=i d \\
& {\left[\begin{array}{ll}
\partial R_{1} / \partial x & \partial R_{1} / \partial y \\
\partial f_{2} / \partial x & \partial \theta_{2} / \partial y
\end{array}\right)=\left[\begin{array}{cc}
\text { cosy } & -x \sin y \\
\sin y & x \cos y
\end{array}\right]} \\
& \text { dep }=x \cos ^{2} y+x \sin ^{2} y \\
& =x\left(\cos ^{2} y+\operatorname{sn}^{2} y\right): x
\end{aligned}
$$

$$
\operatorname{det}\left(f^{\prime}(0,1)\right)=0 \text { not } \begin{gathered}
\text { motile. }
\end{gathered}
$$

9. As in problem 3 let X be the set of absolutely convergent sequences with the norm given by $\left\|\left(a_{n}\right)\right\|=$ $\sum_{n=1}^{\infty} a_{n}$. Consider the function $f: X \rightarrow X$ given by $f\left(a_{n}\right)$ is the sequence $\left(b_{n}\right)$ where $b_{1}=a_{1} a_{2}$ and $b_{n}=a_{n}$ for $n>1$.
Fix an absolutely convergent sequence $\left(c_{n}\right)$.
Let $T: X \rightarrow X$ be given by $T\left(a_{n}\right)=\left(c_{2} a_{1}, c_{1} a_{2}+a_{2}, a_{3}, a_{4}, a_{5}, \ldots\right)$.
(a) Show that T is a linear transformation.
(b) Show that $T=f^{\prime}\left(a_{n}\right)$.

$$
\begin{aligned}
& f\left(a, a_{2}\right)=\left(a_{1}, a_{2}, a_{2}\right) \\
& f(x, y)=(x, y) \\
& f^{\prime}(x, y)=\left[\begin{array}{ll}
\partial 1, y_{2} \\
2 & 21 / 2,
\end{array}\right)=\left[\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } T: x \rightarrow y \text { is a low trouluth ahchis } \\
& \text { bonded. } \\
& \text { mean } T^{\prime}(x)=T \\
& \lim _{h \rightarrow 0} \frac{\|T(x+h)-T(x)-S(h)\|}{\|h\|}=0
\end{aligned}
$$

$$
S=T ? \quad \frac{\|T(x+h)-T(x)-T(h)\|}{\|h\|}
$$

