8)
$$l_n(x) = \sum_{i=0}^{n} \frac{x^i}{i!}$$
 on $[0, 1]$
examz
show is Carry -1/1/2 $||y|| = \int_0^1 \frac{1}{2} \frac{1}{2}$

$$\lim_{N \to \infty} \frac{\partial^2}{\partial t_i!} = 0 \implies N \gg 0$$

4)
$$\mathbb{R}^{s} \stackrel{*}{\longrightarrow} \mathbb{R}^{2} \stackrel{h}{\longrightarrow} \mathbb{R}^{3}$$

 $f \qquad (f^{-1})^{l} (f(\lambda)) = (f^{1}(\lambda))^{l}$
 $if \quad (horse exists $\implies f^{1}(\lambda) \quad is \quad always$
 $mehble.$
 $f(x) = h(g(\lambda)) \quad f^{1}(x) = h^{1}(g(x)) \stackrel{g^{1}(x)}{g^{1}(x)}$
 $g_{X2} \qquad 2x^{3}$
 $hw \quad g \quad null spector
 $s_{0} \quad not \quad he certhele. I$$$

Advanced Calculus II, Fall 2022, Homework 9

Instructor: Danny Krashen

Discussing the problems with other people is encouraged, but you must write up your own work independently!

1. Suppose X and Y are metric spaces and (f_n) is a sequence of continuous functions. Show that if f_n converges uniformly to $f: X \to Y$, then f is also continuous.

2. Consider the sequence of functions described by $f_n(x) = e^x \sin(n)$ defined on the interval [0,1]. Show that this sequence is uniformly equicontinuous: that is, for every $\epsilon > 0$, there exists $\delta > 0$ such that for every n > 0, whenever we have $|x_1 - x_2| < \delta$ with $x_1, x_2 \in [0, 1]$, then we have $|f_n(x_1) - f_n(x_2)| < \epsilon$.

Recall i f is uniformly cont if
$$42007800$$
,
 $1x_0-x_1|<\delta \Longrightarrow 1f(x_0)-f(x_1)<\epsilon \qquad 4x_0,x_0$
If (f_n) a sovere, if is uniformly equicantum if
 $1f(f_n) = 1000$, $(f_n) = 10000$, $(f_n) = 1000$, $(f_n) = 100$

- 3. Recall that a sequence of real numbers (a_n) is called absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ converges. Let X be the set of convergent sequences.
 - (a) (optional) Show that X is a normed vector space with respect to component-wise addition and scalar multiplication, and with the norm $||(a_n)|| = \sum_{n=1}^{\infty} |a_n|$.
 - (b) Suppose we are given a sequence of elements in X. That is, we have a sequence (x_i) consisting of x_1, x_2, \ldots with each x_i itself a sequence, say $x_i = (a_{i,n})$. Suppose that (x_i) is Cauchy with respect to the above norm.
 - i. (required) Show that for each n, the sequence $(a_{i,n})$ is convergent (regarded as a sequence in the variable i).

ii. (required) Write $a_n = \lim_{n \to \infty} a_{i,n}$. Show that (a_n) is absolutely convergent. Hint: use $|a_n| = |a_n - a_{i,n} + a_{i,n}| \le |a_n - a_{i,n}| + |a_{i,n}|$ for every i > 0.

iii. (required) Show that $\lim_{i\to\infty} x_i = (a_n)$. Hint: break up the sum $\sum_{n=1}^{\infty} |a_{i,n} - a_n|$ into two sums $\sum_{n=1}^{k} |a_{i,n} - a_n| + \sum_{n=k+1}^{\infty} |a_{i,n} - a_n|$ and choose k to make the second summand small first.

4. Let X be the vector space of polynomial functions of the form $f(x) = ax^2 + bx + c$ from [0,1] to \mathbb{R} . Consider the following norms on X:

1.
$$||f||_s = \sup\{|f(x)| \mid x \in [0,1]\}$$

2. $||ax^2 + bx + c||_c = \max\{|a|, |b|, |c|\}$

Show that for a sequence (f_n) in X, we have that $\lim_{n \to \infty} f_n = f$ with respect to the metric given by $|| ||_s$ if and only if $\lim_{n \to \infty} f_n = f$ with respect to the metric given by $|| ||_c$.

- 5. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by $f(x, y) = (x \cos y, x \sin y)$. Does f have a differentiable inverse near (0, 1)? That is, is possible to find open sets $U, V \subset \mathbb{R}^2$ with $(0, 1) \in U$ with f(U) = V and a differentiable function $g : V \to U$ such that fg = id = gf?
- 6. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by $f(x, y) = (e^x \cos y, e^x \sin y)$. Does f have a differentiable inverse near (0, 1)? That is, is possible to find open sets $U, V \subset \mathbb{R}^2$ with $(0, 1) \in U$ with f(U) = V and a differentiable function $g : V \to U$ such that fg = id = gf?
- 7. As in problem 3 let X be the set of absolutely convergent sequences with the norm given by $||(a_n)|| = \sum_{n=1}^{\infty} a_n$ Consider the linear transformation $T : X \to X$ given by $T(a_n)$ is the sequence (b_n) where $b_n = a_{n+1}$. Show that ||T|| = 1 (the operator norm).

As in problem 3 let X be the set of absolutely convergent sequences with the norm given by $||(a_n)|| = \sum_{n=1}^{\infty} a_n$ Consider the function $f: X \to X$ given by $f(a_n)$ is the sequence $(1/n a_n)$. Is f continuous? Is it differentiable? (this is a bit of a trick question).

9. As in problem 3 let X be the set of absolutely convergent sequences with the norm given by $||(a_n)|| = \sum_{n=1}^{\infty} a_n$ Consider the function $f: X \to X$ given by $f(a_n)$ is the sequence (b_n) where $b_1 = a_1a_2$ and $b_n = a_n$ for n > 1.

Fix an absolutely convergent sequence (c_n) .

- Let $T: X \to X$ be given by $T(a_n) = (c_2a_1, c_1a_2 + a_2, a_3, a_4, a_5, \ldots).$
- (a) Show that T is a linear transformation.
- (b) Show that $T = f'(a_n)$.
- 10. Suppose $f: X \to Y$ is a map between metric spaces such that there exists some real number L > 0 such that $d(f(x), f(y)) \leq Ld(x, y)$. Show that f must be continuous.
- 11. Suppose $T: X \to Y$ is linear transformation between normed linear spaces which is bounded. Show that T must be continuous.
- 12. Suppose (T_n) is a sequence of linear transformations from \mathbb{R}^3 to \mathbb{R}^5 . Suppose that $\lim_{n \to \infty} T_n = T$ with respect to the operator norm. Show that for every $v \in \mathbb{R}^3$, we have $\lim_{n \to \infty} T_n(v) = T(v)$ in \mathbb{R}^5 .
- 13. Consider the set $X = \{1/n | n = 1, 2, ...\}$. Define d(x, y) = |x y|.
 - (a) Is X a metric space with respect to this metric?
 - (b) Is X complete?

5. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by $f(x, y) = (x \cos y, x \sin y)$. Does f have a differentiable inverse near (0, 1)? That is, is possible to find open sets $U, V \subset \mathbb{R}^2$ with $(0, 1) \in U$ with f(U) = V and a differentiable function $g : V \to U$ such that fg = id = gf?

 $n \rightarrow \infty$

$$f(f^{-1}(x)) = x \qquad (f \cdot f^{-1})'(x) = (f \cdot f^{-1})'(x) = Id$$

$$f'(f^{-1}(x)) = (f^{-1})'(f(x)) f'(x) = Id$$

$$(f^{-1}(f(x))) = (f^{-1})'(f(x)) f'(x) = Id$$

$$(f^{-1}(f(x))) = (f^{-1})'(f(x)) f'(x) = id$$

$$(f^{-1})'(f(x)) + f'(x) = id$$

$$(f^{-1})'(f(x))$$

Let (f' (0,1)) = 0 not mochble

9. As in problem 3 let X be the set of absolutely convergent sequences with the norm given by $||(a_n)|| =$ $\sum_{n=1}^{\infty} a_n$. Consider the function $f: X \to X$ given by $f(a_n)$ is the sequence (b_n) where $b_1 = a_1 a_2$ and $b_n = a_n$ for n > 1. Fix an absolutely convergent sequence (c_n) . Let $T: X \to X$ be given by $T(a_n) = (c_2a_1, c_1a_2 + a_2, a_3, a_4, a_5, \ldots).$ (a) Show that T is a linear transformation. (b) Show that $T = f'(a_n)$. Squinti just lakent foi 2 miller R2- S(a, a2)} $f(a_1, a_2) = (a_1, a_2, a_1)$ f(x,y) = (xy,y) $f'(x,y) = \int \frac{\partial l_1}{\partial x} \frac{\partial l_2}{\partial y} = \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix}$ if T: X -> Y is a low tomal where is bonded. S= I'(x) means Then T'(n) = T $\lim_{h \to 0} \frac{\|T(x+h) - T(x) - S(h)\|}{\|h\|} = 0$ n_-10 TINITIN

S = T? $\|T(x+h) - T(x) - T(h)\|$

11 h 11