$\mathbb{Z}_{20}=$ all jassible states at gare when its A'sturn
$A \subset \mathbb{Z}_{>0}$ all sktes inwhich plopr $A$ minas

$$
B C \text { C } \quad 2 \in A \quad 3 \in B \text { beare } \quad B=3 \mathbb{Z}
$$

If a permes "ACstorn, wha vins! Clain

$$
\underset{n \in A}{\ell A} \quad \backslash B
$$

Gagal drom last trer
$\xrightarrow{\text { Dorp } 11.2 .7} x, y$ metiospres, $y^{2}$ complete $\left(f_{n}\right)$ seqere in fun $(x, y)$ sit. $f_{n} \rightarrow f$ connge unfomly
Let $\left(x_{k}\right)$ seque in $X$ s.t. $x_{n} \rightarrow X$
suppare $\lim _{k \rightarrow \infty} f_{n}\left(x_{k}\right)$ exist fo all $\left.n . \quad \begin{array}{c}\text { not resc.ass } y) \\ =f_{n}(x)\end{array}\right)$
(H6n $\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} f_{n}\left(x_{k}\right)\left(=\lim _{k \rightarrow \infty} f\left(x_{k}\right)\right)$ in prtiouls, Tlex Imits

$$
" \lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} f_{n}\left(x_{k}\right)
$$ exiot

Pm $X$ ast $I$ complete netricapce $\sim /\left(f_{n}\right)$ unil-Eachy in $\operatorname{Fun}(x, y)$ then $f_{n} \rightarrow f$ unduly frsose $f_{6} \operatorname{Fon}(x, y)$
vay this, let's prep prop aboes
Pli first inut teshow that $\lim _{u \rightarrow \infty} \lim _{k \rightarrow \infty} f_{n}\left(x_{k}\right)$ exists. vecall $\begin{gathered}\lim _{k \rightarrow \infty} f_{n}\left(x_{N}\right)=a_{n} \quad{ }^{\text {wnit }} \\ \lim _{n \rightarrow \infty} a_{n} \text { exists all } n\end{gathered}$
Sine $Y$ conplete, ve justreed $\left(a_{n}\right)$ is a Carchy sequase

$$
\begin{aligned}
& d\left(a_{n}, a_{m}\right) \leq d\left(a_{m}, f_{n}\left(x_{k}\right)\right)+d\left(f_{m}\left(x_{k}\right), f_{m}\left(x_{k}\right)\right) \\
& \quad+d\left(\ln \left(x_{k}\right), a_{m}\right. \\
& \quad \ln _{n} y
\end{aligned}
$$

Sue $f_{n} \rightarrow f$ unimory, gien $\varepsilon>0$
in patroulos, is tre bo $p=x_{k}$ any $x_{k}$

$$
\begin{aligned}
& d\left(a_{n}, a_{m}\right) \leq d\left(a_{n}, f_{n}\left(x_{k}\right)\right)+d\left(f_{n}\left(x_{n}\right), a_{n}\right)+\varepsilon \\
& \Rightarrow d\left(a_{n}, a_{m}\right) \leq \underbrace{\lim _{k \rightarrow \infty} d\left(a_{n}, f_{n}\left(x_{k}\right)\right)+d\left(f_{m}\left(k_{k}\right), a_{m}\right)}_{0}+\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& d\left(a_{n}, a_{m}\right) \leq \varepsilon . \\
\Rightarrow & a_{n} \text { are cucty } \Rightarrow \lim _{\substack{n \rightarrow \infty \\
a_{n}}} a_{n}=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} f_{n}\left(x_{k}\right)
\end{aligned}
$$

$$
\begin{align*}
& \text { reed } \operatorname{los}_{\lim _{k \rightarrow \infty} \underbrace{\lim _{n \rightarrow \infty} f_{n}\left(x_{k}\right)}_{f\left(x_{k}\right)}}^{\underbrace{}_{k \rightarrow \infty}}=a \quad f_{n} \rightarrow f \text { unifmly } \\
& \lim _{k \rightarrow \infty} f\left(x_{k}\right)=a . \\
& d\left(f\left(x_{m}\right), a\right) \leq d\left(f\left(x_{m}\right), f_{k}\left(x_{m}\right)\right)+d\left(f_{k}\left(x_{m}\right), a_{k}\right) \\
& +d\left(a_{k}, a\right)<\varepsilon
\end{align*}
$$

quens>0 chaose $k$ lage sa that $d\left(f(p), f_{k}(p)\right)<\frac{\varepsilon}{3}$
and alsalageenghso that $d\left(a_{k}, a\right)<\frac{\varepsilon}{3}$
and hecase $\lim _{m \rightarrow \infty} f_{k}\left(x_{m}\right)=a_{k}$

$$
\begin{gathered}
\exists N \text { sht. } m \geqslant N \\
d\left(f_{k}\left(x_{m}\right), a_{k}\right)<\varepsilon / 3 \quad D
\end{gathered}
$$

"Remidor from last cemester
fn savere of Rremsunn interrolle forations $f_{n}:[a, 17 \rightarrow R$ connyy unilmuly to $f:[a, b] \longrightarrow \mathbb{R}$ than $f$ is Remann Integrable and

$$
\begin{aligned}
& \text { Rremann lutgrable and } \\
& \lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} \lim _{n \rightarrow \infty}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x
\end{aligned}
$$

Q: If $f, x \rightarrow y$ fontion $x, y$ metirspoes what is $\int_{x}^{f}=$ ?
$y$

$\checkmark$ break $X$ inte chats
 laver sum = total area in rectogles $\mathrm{w} /$ small vapr ... $=\cdots$ lage
Imit and ,ubgingous of $X$ hope the mumers congets save thy.
extrastrctue geroilly weant $y$ to be a complete normed vectrogue
$X$ "measure space"
Metathevers genoally $f$ i $x \rightarrow y$ conturs
is interalle if $f: x \rightarrow y \rightarrow \mathbb{R}$
this is intaratle.


$$
\begin{aligned}
& f: x \rightarrow y \\
& \|f\|: x \rightarrow \mathbb{R} \\
& \|f\|(x)=\|f(x)\|
\end{aligned}
$$

$$
y \text { nond orgue }
$$

$$
y \rightarrow \mathbb{R}
$$

