Advanced Calculus II, Fall 2022, Homework 2

Instructor: Danny Krashen

Discussing the problems with other people is encouraged, but you must write up your own work independently!

1. (required) Consider the set $S=\left\{1 / n \mid n \in \mathbb{Z}_{>0}\right\}$ and let $T=\mathbb{R} \backslash S$. Show that every point in T is in the interior of T except for 0 .
2. (required) Suppose X is a complete metric space and $S \subset X$ is closed. Show that S is also complete (considered as a metric space itself).
3. (required) Let X be a metric space and $x \in X$ an element. Show that $\{x\}$ is closed.
4. (required) Show that there is no metric preserving map $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ (using the standard Euclidean metric). That is, there is no function ϕ such that $d(\phi(x), \phi(y))=d(x, y)$ for all x, y.
5. (required)

If X is a metric space and $S \subset X$ is a subset, we define the closure of S, denoted \bar{S}, to be the points $x \in X$ such that for every $\epsilon>0$, we have $B_{\epsilon}(x) \cap S \neq \emptyset$.
(a) Show that if $x \in \bar{S}$ then there exists a sequence $\left(s_{n}\right)$ with $s_{n} \in S$ with $\lim _{n \rightarrow \infty} s_{n}=x$.
(b) Show that if there exists a sequence $\left(s_{n}\right)$ with $s_{n} \in S$ with $\lim _{n \rightarrow \infty} s_{n}=x$, then $x \in \bar{S}$.
(c) Show that \bar{S} is closed.
6. (optional) Find an example of a metric space (X, d), points $x, y \in X$ and a real number $r>0$ such that $d(x, y)=r$ but $y \notin \overline{B_{r}(x)}$ (the closure of the ball (see the previous problem)).
7. (optional) Recall that if we are given a metric space (X, d), we can define a notion of an open set with respect to that metric. Suppose we are given two different metrics d^{\prime} and d on X such that there exists a $\lambda>0$ such that for all $x, y \in X$, we have $d(x, y) \leq \lambda d^{\prime}(x, y)$. Show that if U is open with respect to the metric d^{\prime}, it is also open with respect to the metric d.
8. (optional) Let (X, d) be a metric space and consider the new metric d^{\prime} defined by $d^{\prime}(x, y)=\min \{d(x, y), 1\}$. Show that a subset $S \subset X$ is open with respect to d if and only if it is open with respect to d^{\prime}.
9. (optional) Suppose X is a metric space such that the distance function d only takes on finitely many values. Show that in this case X is complete.
10. (optional) Consider the rational numbers $X=\mathbb{Q}$ as a metric space (regarded as a subspace of \mathbb{R}). Let $S=\{r \in \mathbb{Q} \mid \sqrt{2}<r<\sqrt{2}\}$. Show that S is closed in X.
11. (optional) Suppose X is a metric space and $S \subset X$ is a subset such that every sequence $\left(a_{n}\right)$ with $a_{n} \in S$ converges to some element of X (not necessarily in $S!$). Show that \bar{S} is sequentially compact: every sequence $\left(b_{n}\right)$ with $b_{n} \in \bar{S}$ converges to some element of \bar{S}.

