Advanced Calculus II, Fall 2022, Homework 1 Instructor: Danny Krashen

Discussing the problems with other people is encouraged, but you must write up your own work independently!

1. (required) Show that if X is the set of continuous functions from the interval [0,1] to the real line \mathbb{R} , then setting $d(f,g) = \int_0^1 |f(x) - g(x)| dx$ defines a metric on X.

2. (required) Show that for $X = \mathbb{R}^2$, we can define a metric by $d(\vec{x}, \vec{y}) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$.

3. (required) (Libl, Exercise 7.3.2)

(a) Show that $d(x, y) = \min\{1, |x - y|\}$ defines a metric on \mathbb{R} .

(b) Show that a sequence converges in (\mathbb{R}, d) if and only if it converges in the standard metric.

(c) Find a bounded sequence in (\mathbb{R}, d) that contains no convergent subsequence.

- 4. (required) Consider the function $\phi(t) = \frac{t}{t+1}$.
 - (a) Show (without using calculus!) that $\phi(t)$ is monotonically increasing that is, $t_1 > t_2$ implies $\phi(t_1) \ge \phi(t_2)$.

(b) Show that $\phi(t_1 + t_2) \le \phi(t_1) + \phi(t_2)$ for $t_1, t_2 \ge 0$.

(c) Show that if d is a metric on a set X, then we get a new metric \overline{d} by defining $\overline{d}(x,y) = \phi(d(x,y))$.

- 5. (optional) Show that for $X = \mathbb{R}^2$, we can define a metric by $d(\vec{x}, \vec{y}) = |x_1 y_1| + |x_2 y_2|$.
- 6. (optional) Let X be the set of lines in the plane through the origin. For lines L_1, L_2 , let $\angle(L_1, L_2)$ denote the angle from L_1 to L_2 .
 - (a) If we set $d(L_1, L_2) = |\angle (L_1, L_2)|$, does this define a metric? Why or why not?
 - (b) If we set

$$d(L_1, L_2) = \begin{cases} |\angle(L_1, L_2)| & \text{if } |\angle(L_1, L_2)| \le \pi/4 \\ \pi/4 & \text{otherwise} \end{cases}$$

does this define a metric on X? Why or why not?

- 7. (optional) Show that if X is the set of continuous functions from the interval [0, 1] to the real line \mathbb{R} , then setting $d(f,g) = \max\{|f(x) g(x)| \mid x \in X\}$ defines a metric on X.
- 8. (optional) Let (X, d) be a metric space. Consider the following two definitions:

Definition 1 A subset $S \subset X$ is called bounded if there exists some $x \in X$ and some real number R > 0 such that for all $s \in S$, $d(x, a) \leq R$.

Definition 2 A subset $S \subset X$ is called boundid if there for every $x \in X$, there exists some real number R > 0 such that for all $s \in S$, $d(x, s) \leq R$.

Show that a subset $S \subset X$ is bounded if and only if it is boundid.

9. (optional) Let X be a set and let $\mathcal{X} = \{d : X \times X \to \mathbb{R} | d \text{ is a metric}\}$ be the set of all metrics on X. We are going to try to put something like a metric on the space \mathcal{X} , to try to talk about how "far apart" metrics are from each other¹.

For metrics d_1, d_2 define

$$M(d_1, d_2) = \inf\{r \in \mathbb{R} \mid d_1(x, y) \le rd_2(x, y) \text{ for all } x, y \in X\} \\ m(d_1, d_2) = \sup\{r \in \mathbb{R} \mid rd_2(x, y) \le d_1(x, y) \text{ for all } x, y \in X\}.$$

That is, $M(d_1, d_2)$ and $m(d_1, d_2)$ are the smallest and largest real numbers respectively such that

$$m(d_1, d_2)d_2(x, y) \le d_1(x, y) \le M(d_1, d_2)d_2(x, y).$$

Define $\delta(d_1, d_2) = \log \frac{M(d_1, d_2)}{m(d_1, d_2)}$.

Show that this function δ satisfies the first, third and fouth properties of a metric (nonnegativity, symmetry, triangle inequality), but not the second (equality of indiscernibles).

 $^{^{1}}$ the issue of comparing different metrics on a space is a very natural one – often one has a set in question, be it phylogenetic trees, or some set of user preferences, and one would like to compare different ways of assigning distances to elements of this set!