Advanced Calculus II, Fall 2022, Homework 1

Instructor: Danny Krashen

Discussing the problems with other people is encouraged, but you must write up your own work independently!

1. (required) Show that if X is the set of continuous functions from the interval $[0,1]$ to the real line \mathbb{R}, then setting $d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x$ defines a metric on X.
2. (required) Show that for $X=\mathbb{R}^{2}$, we can define a metric by $d(\vec{x}, \vec{y})=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}$.
3. (required) (Libl, Exercise 7.3.2)
(a) Show that $d(x, y)=\min \{1,|x-y|\}$ defines a metric on \mathbb{R}.
(b) Show that a sequence converges in (\mathbb{R}, d) if and only if it converges in the standard metric.
(c) Find a bounded sequence in (\mathbb{R}, d) that contains no convergent subsequence.
4. (required) Consider the function $\phi(t)=\frac{t}{t+1}$.
(a) Show (without using calculus!) that $\phi(t)$ is monotonically increasing - that is, $t_{1}>t_{2}$ implies $\phi\left(t_{1}\right) \geq \phi\left(t_{2}\right)$.
(b) Show that $\phi\left(t_{1}+t_{2}\right) \leq \phi\left(t_{1}\right)+\phi\left(t_{2}\right)$ for $t_{1}, t_{2} \geq 0$.
(c) Show that if d is a metric on a set X, then we get a new metric \bar{d} by defining $\bar{d}(x, y)=\phi(d(x, y))$.
5. (optional) Show that for $X=\mathbb{R}^{2}$, we can define a metric by $d(\vec{x}, \vec{y})=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$.
6. (optional) Let X be the set of lines in the plane through the origin. For lines L_{1}, L_{2}, let $\angle\left(L_{1}, L_{2}\right)$ denote the angle from L_{1} to L_{2}.
(a) If we set $d\left(L_{1}, L_{2}\right)=\left|\angle\left(L_{1}, L_{2}\right)\right|$, does this define a metric? Why or why not?
(b) If we set

$$
d\left(L_{1}, L_{2}\right)= \begin{cases}\left|\angle\left(L_{1}, L_{2}\right)\right| & \text { if }\left|\angle\left(L_{1}, L_{2}\right)\right| \leq \pi / 4 \\ \pi / 4 & \text { otherwise }\end{cases}
$$

does this define a metric on X ? Why or why not?
7. (optional) Show that if X is the set of continuous functions from the interval $[0,1]$ to the real line \mathbb{R}, then setting $d(f, g)=\max \{|f(x)-g(x)| \mid x \in X\}$ defines a metric on X.
8. (optional) Let (X, d) be a metric space. Consider the following two definitions:

Definition 1 A subset $S \subset X$ is called bounded if there exists some $x \in X$ and some real number $R>0$ such that for all $s \in S, d(x, a) \leq R$.
Definition 2 A subset $S \subset X$ is called boundid if there for every $x \in X$, there exists some real number $R>0$ such that for all $s \in S, d(x, s) \leq R$.
Show that a subset $S \subset X$ is bounded if and only if it is boundid.
9. (optional) Let X be a set and let $\mathcal{X}=\{d: X \times X \rightarrow \mathbb{R} \mid d$ is a metric $\}$ be the set of all metrics on X. We are going to try to put something like a metric on the space \mathcal{X}, to try to talk about how "far apart" metrics are from each other ${ }^{1}$.
For metrics d_{1}, d_{2} define

$$
\begin{aligned}
& M\left(d_{1}, d_{2}\right)=\inf \left\{r \in \mathbb{R} \mid d_{1}(x, y) \leq r d_{2}(x, y) \text { for all } x, y \in X\right\} \\
& m\left(d_{1}, d_{2}\right)=\sup \left\{r \in \mathbb{R} \mid r d_{2}(x, y) \leq d_{1}(x, y) \text { for all } x, y \in X\right\}
\end{aligned}
$$

That is, $M\left(d_{1}, d_{2}\right)$ and $m\left(d_{1}, d_{2}\right)$ are the smallest and largest real numbers respectively such that

$$
m\left(d_{1}, d_{2}\right) d_{2}(x, y) \leq d_{1}(x, y) \leq M\left(d_{1}, d_{2}\right) d_{2}(x, y)
$$

Define $\delta\left(d_{1}, d_{2}\right)=\log \frac{M\left(d_{1}, d_{2}\right)}{m\left(d_{1}, d_{2}\right)}$.
Show that this function δ satisfies the first, third and fouth properties of a metric (nonnegativity, symmetry, triangle inequality), but not the second (equality of indiscernibles).

[^0]
[^0]: ${ }^{1}$ the issue of comparing different metrics on a space is a very natural one - often one has a set in question, be it phylogenetic trees, or some set of user preferences, and one would like to compare different ways of assigning distances to elements of this set!

