Towards Brooks' Theorem

The 2-connected case

Danny Krashen

Brooks' Theorem Suppase Gis a (simple) connected graph, G not complete and not an ard cycle. Then $X(G) \leqslant \Delta(G)$.

Strategy (Lovasz 1973 /Bandy: Musty 1976)
Argue by contradiction, carefol examination of a" minimal criminal"

Def A grigh G is called k-critical if $X(G)=k$ bot $X(G-e)<k$ for all $e \in E(G)$.
(Standard def: A graph G is k-critical if $\chi(G)=k$, bot $\chi(H)<k$ all $H_{x} G$)
Same if G is connected, which well always assume.

Recall 1 if $\chi(G)=k$ then $k \leqslant \Delta(G)+1$

$$
\text { Brooks }=k \leqslant \Delta(G)
$$

Theorem: If G is k-critical, then

$$
k \leqslant \delta(G)+1
$$

Theanem: If G is k-critical, then

$$
k \leqslant \delta(G)+1
$$

P1: suppase $\operatorname{deg}(v)=\delta<k-1 . G k-$ cnitial $\Rightarrow G-v$ is $k-1$ calorable.

Theanem: If G is k-critical, then

$$
k \leqslant \delta(G)+1
$$

P1: soppose $\operatorname{dy}(v)=\delta<k-1 . G k$-cntral
$\Rightarrow G-v$ is $k-1$ colorable.

Theanem: If G is k-critical, then

$$
k \leqslant \delta(G)+1
$$

If: $\operatorname{soppase} \operatorname{deg}(v)=\delta<k-1 . G k$-critival $\Rightarrow G-v$ is $k-1$ calorable.

Theanem: If G is k-critical, then

$$
k \leqslant \delta(G)+1
$$

P1: suppase $\operatorname{deg}(v)=\delta<k-1 . G k-$ cnitial $\Rightarrow G-v$ is $k-1$ colorable.

$$
\begin{gathered}
x(t) \leq k-1 \Leftarrow \\
y
\end{gathered}
$$

Before: no cot vertices
Question: what about 2-vertex cuts?
Answer: Very restucte.
Prop: If u, v are a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+d y(u) \geqslant 3 k-5$

Prop: If u, v ore a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+d y(u) \geqslant 3 k-5$ Is this "good"? Is this "useful"?

Prop: If u, v ore a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+d y(u) \geqslant 3 k-5$ Is this "gad" ?
prances says dy $u \geqslant \delta(v) \geqslant k-1$

$$
\begin{aligned}
& d j v \geqslant k-1 \\
& \text { sa } d y a+d y v \geqslant 2 k-2!
\end{aligned}
$$

Prop: If u, v ore a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+d y(u) \geqslant 3 k-5$ Is this "gad"?
so-cunzusly strong!

Prop: If u, v are a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+d y(u) \geqslant 3 k-5$
Is this "useful"?
If hare such a cot \Rightarrow

$$
\begin{aligned}
2 \Delta(G) \geqslant \operatorname{deg} u+\operatorname{Deg} v & \geqslant 3 k-5 \geqslant 2 k-1 \\
& \text { if } k \geqslant 4 .
\end{aligned}
$$

bot $2 \Delta(G)$ even $\Rightarrow \Delta(G) \geqslant k \Omega$

Prop: If u, v ore a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+d y(u) \geqslant 3 k-5$
Is this "useful"?
consequence: if \exists a 2 -vertex cut, Brooks the true for G.

Prop: If u, v are a 2 -vertex cut in a k-critical graph, then $\operatorname{dg}(u)+d y(v) \geqslant 3 k-5$
Pl: Let H_{1}, \ldots, H_{l} be the components of $G-\{u, v\}$ Let $V_{i}=V\left(H_{i}\right)$ and set $G_{i}=G\left[V_{i} \cup\{u, v\}\right.$

Prop: If u, s are a 2 -vertex cot in a k-critical graph, then $d^{k} g(u)+d y(v) \geqslant 3 k-5$
PI let $H_{1, \ldots y} H_{l}$ be the components of $G-\{u, v\}$
Let $V_{i}=V\left(H_{i}\right)$ and set $G_{i}=G\left[V_{i} \cup\{u, v]\right.$
$G_{i} \leqslant G \Rightarrow G_{i}$ is $k-1$ colorable
Suppose we can color all G_{i}^{\prime} s wo l $k-1$ colors giving $u \vdots$, same coaler \Rightarrow can color $G \omega / k-1$ colors x

Prop: If u, s are a 2 -vertex cot in a k-critical graph, then $d^{k} g(u)+d y(v) \geqslant 3 k-5$
PI let $H_{1, \ldots y} H_{l}$ be the components of $G-\{u, v\}$
Let $V_{i}=V\left(H_{i}\right)$ and set $G_{i}=G\left[V_{i} \cup\{u, v\}\right.$
$G_{i} \leqslant G \Rightarrow G_{i}$ is $k-1$ colorable
Suppose we can color all G_{i}^{\prime} wo l $k-1$ colors giving $u \vdots v$ different colas \Rightarrow can color $G w / k$-loopers

Prop: If u, s are a 2 -vertex cot in a k-critical graph, then $d^{k} g(u)+d y(v) \geqslant 3 k-5$
PI let $H_{1, \ldots y} H_{l}$ be the components of $G-\{u, v\}$
Let $V_{i}=V\left(H_{i}\right)$ and set $G_{i}=G\left[V_{i} \cup\{u, N]\right.$ wLOG, every $k-1$ colony of G_{1} gives u, v diff colors r_{1} every $k-1$ colony of G_{2} gives u, v same colors $\Rightarrow G_{1} \cup G_{2}$ is k-critical $\Rightarrow G=G_{1} \vee G_{2}$!

Prop: If u, v ore a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+d y(u) \geqslant 3 k-5$
PP: Let H_{1}, \ldots, H_{l} bethe components of $G-\{u, v\}$
Let $V_{i}=V\left(H_{i}\right)$ and set $G_{i}=G\left[V_{i} \cup\{u, v\}\right]$
$G_{i} \leqslant G \Rightarrow G_{i}$ is $k-1$ colorable
$l=2$, every calay af $G_{1}, l l k-l$ colors gives supped u, v diff colors: every coly of $G_{2} / /(k-1$ gree un

Prop: If u, v ore a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+d y(u) \geqslant 3 k-5$
PP: Let H_{1}, H_{2} bethe components of $G-\{u, v\}$ $H_{1} / u, v$ is not k-l colourable
$\mathrm{H}_{2}+u v$ is not $k-1$ colorable

Prop: If u, v ore a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+d y(u) \geqslant 3 k-5$
PPI: Let H_{1}, H_{2} bethe components of $G-\{u, \nu\}$ $H_{1} / u, v$ is not k-l colorable
bot it is k-colorable: coloryof $H_{1 / w, v}$
$G-\{u, N\}$ is $k-1$ colorable $\Rightarrow G$ can be π k colored by assign g nee w color to both ul

Prop: If u, v are a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+\operatorname{dg}(u) \geqslant 3 k-5$
PP: Let H_{1}, H_{2} bethe components of $G-\{u, v\}$
$H_{1 / u, v}$ is $\frac{k \text {-cortical }}{}$
Lees $E\left(H_{1}\right)=E\left(H_{1} / 4, v\right)$ than G-e is $k-1$ callable. Restrict to $G_{2}: u, v$ get same color in this coburg \Rightarrow get a colony af $\mathrm{H}_{1} / 4, \mathrm{v}$

Prop: If u, v ore a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+d y(u) \geqslant 3 k-5$
PP: Let H_{1}, H_{2} bethe components of $G-\{u, \nu\}$ $H_{2}+u v$ is k-conical
k-colorable: $G-u$ is $k-1$ colorable \Rightarrow can add aol k th color, get a k-oolory of G who n, dits clos \checkmark

Prop: If u, v ore a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+d y(u) \geqslant 3 k-5$
PP: Let H_{1}, H_{2} bethe components of $G-\{u, \nu\}$
$\mathrm{H}_{2}+u v$ is k-conical k-colorable $\left(H_{2}+u v\right)$-uv $=H_{2}$ is $k-1$ calaracle.

Prop: If u, v ore a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+\operatorname{dg}(u) \geqslant 3 k-5$
PP: Let H_{1}, H_{2} bethe components of $G-\{u, \nu\}$ $\mathrm{H}_{2}+u v$ is k-conical k-colorable If eeo $E\left(H_{2}\right), G-e$ is $k-1$ colorable, restrict coly to $G_{1} \Rightarrow u, v$ diff. cars \Rightarrow get s calong of $\mathrm{H}_{2} \checkmark$

Prop: If u, v ore a 2 -vertex cot in a k-critical graph, then $\operatorname{deg}(u)+\operatorname{dg}(u) \geqslant 3 k-5$
PR: Let $H_{1,} H_{2}$ bethe components of $G-\{u, v\}$ $G_{1}\left(l_{1}\right): G_{2}+u v$ ank-cint. $\Rightarrow \delta\left(G_{i}\right) \geqslant k-1$

$$
\begin{aligned}
& \text { so } \operatorname{dg}_{G_{2}+w v}(a), \operatorname{dog}_{G^{+}+w}(v) \geqslant k-1 \rightarrow 2 \cdot(k-2) \\
& \text { edseing } \\
& \operatorname{deg}_{G_{1 / m,}(w)}(w) \geqslant k-1 \rightarrow k-1 \text { edges in } G \\
& \Rightarrow 2 k-4+k-1=3 k-5 \text { edge! }
\end{aligned}
$$

\square

