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1. CENTRAL SIMPLE ALGEBRAS AND AZUMAYA ALGEBRAS
1.1. Central simple algebras.

Definition 1.1. We say that an algebra A over a field F is a central simple F-algebra
if

e Z(A) =F,and dimr A < o0 (A is F-central),

¢ A has no nontrivial 2-sided ideals (A is simple).

Definition 1.2. We say that an algebra A over a field F is a central division algebra
if it is a central simple algebra which is a division ring. That is, if it is and F-central
division algebra.

Let’s recall the various characterizations we have made for central simple alge-
bras.

Proposition 1.3. Let A be a finite dimensional algebra over a field F. Then the following
conditions are equivalent:

(1) A s a central simple F-algebra,

(2) A =M, (D) where D is an F-central division algebra,

(3) The “sandwich map” A ® AP — Endp(A) via

(4) a®b — (x — axb) is an isomorphism,

(5) there exists an F-algebra B such that A ® B = M,,(F) for some n,

(6) there exists an F-algebra B such that A ® B is a central simple F-algebra,

(7) there exists a field extension E/F such that A ® E = M,,(E) for some n,

(8) there exists a separable field extension E/F such that A ® E = M,,(E) for some n,

(9) A®F = M,(F) for some n.

One more equivalent condition we didn’t prove, but which is worth mentioning
is that A be a projective module over the enveloping algebra A ®r AP (i.e. the
multiplication map A ® A°? — A splits).

1.2. Azumaya algebras. To generalize from fields to commutative rings, we define
the concept of Azumaya.

In the following proposition, for a commutative ring R and a prime p € Spec(R),
we will write x(p) to denote the field frac(R/p) (also called the residue field of p).

Proposition 1.4. For an algebra A over a commutative ring R which is finitely generated
and projective as a module, the following are equivalent:

(1) for every p € Spec(R), A ®r x(p) is a central simple x(p)-algebra,

(2) the sandwich map A Qg A°P — Endg(A) is an isomorphism.

Definition 1.5. If the equivalent conditions of Proposition[I.4 hold, we say that A
is an Azumaya algebra over R (also called a central separable algebra over R).
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Just as a side comment — it turns out that when A/R is Azumaya it will follow
that A is finitely presented as an R module and is a generator in the category of
R modules (recall that M is a generator if for every other R-module N, there is
a surjective map M! -» N for some index set I). So being an Azumaya algebra
imposes serious module-theoretic constraints on an algebra.

2. (GALOIS EXTENSION OF RINGS

Much like the story for division algebras, while we may start by wanting to
construct interesting examples of (central) division algebras, it is useful to consider
instead central simple algebras. There are a few natural reasons that this kind of
consideration comes up:

e many natural constructions which sometimes yield division algebras will
often produce central simple algebras instead,

e when we construct central simple algebras, by the Wedderburn structure
theorem, we may find that we have constructed division algebras within
them,

o division algebras are not “preserved by scalar extension.” In other words,
if D/F is a central division algebra, and E/F is a field extension, D ®r E will
be central simple, but need not be division.

A very similar discussion arises when considering Galois extension, which leads
us to consider the concept of Galois extensions of the form E/F where E need not be
a field. From here we will then proceed to consider the case where both F and E are
replaced by more general commutative rings (in some analogy with the concept of
Azumaya algebras).

2.1. Etale extensions of fields. Let’s start with the generalization of the concept of
a (not necessarily Galois) separable field extension, before considering the Galois
case:

Definition 2.1 (Etale extensions of fields). Let F be a field. We say that a commu-
tative F-algebra E/F is étale over F if we can write E as a finite (possibly empty)
product E = X E; where each E; is a separable field extension of F.
iel
We note that in the literature, one also says that E/F is a separable extension of
rings.

2.1.1. A strange digression into empty rings. Let us take just a moment to discuss the
edge case in which the product is empty. By convention, an empty product is a final
object in a category, and here, considering ourselves to be in the category of unital
commutative rings, we find that this final object is the “zero ring,” consisting of a
single element 0 = 1. While this ring is not actually a field (because, for example,
its nonzero elements fail to form a group, not having an identity element), we still
consider the zero ring to be a product of fields, as it is an empty product of fields.
Consequently it is an étale extension of every field.

2.2. Galois étale extensions of fields. We may or may not get to proving all these
equivalent conditions, but here are some ways we can characterize what it means
for an étale extension to be Galois.

Recall the following definition:
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Definition 2.2. Let S be a ring and G a finite group acting on S as automorphisms.
We define (S, G, 1), the twisted group ring, to be the algebra generated by S and
symbols u, for o € G, so that as a left S-module we have

(S,G,1) = P Su,,

oeG

with multiplication given by the rules
Ugly = Uyr and X = o(X)uy, forx € S,0,7 € G.

Definition/Lemma 2.3. Let F be a field and E a commutative F-algebra and let G <
Aut(E/F) be a group of automorphisms of E fixing F. We say that E is a G-Galois extension
of F if the following equivalent conditions hold:

(1) |G| = dimp E and E¢ = F,

(2) (E,G,1) is a central simple F-algebra,

(3) the natural map (E, G,1) — Endg(E) is an isomorphism,

(4) the natural map (E, G,1) — Endp(E) is injective (i.e. Dedekind’s Lemma holds),

(56) we can write E = );; Ei with E;/F separable extensions, and such that the
induced action of G on I is transitive and for each i € 1, E;/F is Stabg(i)-Galois.

An important thing to note is that there is generally no canonical choice for
the group G for a given F-algebra E. So, for example, the R-algebra C x C can be
regarded as Galois

e with respect to the group C; x C, = {0, 7 | 0%,7%) via the action d(z1,22) =
(22,21> and T(Zl,Zz) = (21,22), or
o with respect to the group Cy = (y | ¥4y via the action y(z1,22) = (22,21)-

2.3. Etale extensions of commutative rings. We will come back to this a bit later
when considering étale cohomology and more general descent, but let’s define, as
we are now able to, the notions of what it means for an extension of commutative
rings to be étale.

Definition 2.4. Let R be a commutative ring. We say that an R-algebra S is étale if it
is finitely presented generated and flat as an R-module, and if, for every p € Spec(R),
we have S ®r k(p) is an étale extension of the field «(p).

2.4. Galois extensions of commutative rings. As with the notion of Azumaya,
we are now ready to present the notion of what it means for an extension of rings
to be Galois.

Definition/Lemma 2.5. Let R be a commutative ring and S a commutative R-algebra.
Let G < Aut(S/R) be a group of automorphisms of S fixing R. We say that S is a G-Galois
extension of R if the following equivalent conditions hold:

(1) for every p € Spec(R), S ®r k() is a G-Galois extension over k(p),
(2) (S,G,1) is an Azumaya algebra over R,
(3) the natural map (S, G,1) — Endg(S) is an isomorphism.

While not obvious from the definitions, the condition that S/R is G-Galois also
imposes strong module-theoretic constraints on S, namely that S is a finitely gener-
ated projective R-module which is a generator in the category of R-modules. These
conditions also imply that S© = R (as expected from usual Galois theory).
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3. GaLo1s DESCENT — AN EQUIVALENCE OF CATEGORIES

One important consequence of Definition/Lemma this is that the Morita
theorems apply (see Proposition [A.2), and we obtain an equivalence of categories
as follows:

Lemma 3.1. Let S/R be a G-Galois extension of commutative rings. Then we obtain an
equivalence of categories
R-modules < (S, G, 1)-modules
M — S®@r M

via the standard (S, G, 1) = Endg(S)-module structure on S.
We can make this particularly useful by recalling the notion of semilinear actions.

Definition 3.2. Let G be a group acting on a commutative ring S and let M be an
S-module. A G-semilinear action on M is an action of G on M as an Abelian group
such that for each 0 € G, m e M, x € S, we have o(xm) = o(x)a(m).

A G-semilinear S-module is defined to be an S-module with a G-semilinear
action.

We may then consider the category of such G-semilinear S-modules and observe
that this category is also equipt with a tensor product (monoidal) structure. That
is, if My, M, are G-semilinear S-modules, we can define M; ®s M, to have a G-
semilinear action via

a(my ®@my) = o(my) ® a(my).

With this notion, we can then define the notion of a G-semilinear S-algebra (via its
structural maps such as A ®s A — A satisfying various axioms).
We note the following fact, which is easily verified via the definitions:

Lemma 3.3. Let S be a ring with an action of a group G. Then there is an equivalence
(actually an isomorphism) of categories between (S, G, 1)-modules G-semilinear S-modules.

Combining Lemma [3.3|with Lemma 3.1} we obtain the following:

Theorem 3.4 (Galois descent). Let S/R be a G-Galois extension of commutative rings.
Then we obtain an equivalence of categories

R-modules — G-semilinear S-modules
M— S M
N¢ < N.
Furthermore, this equivalence respects tensor products.

We verified implicitly that one of these directions gives an equivalence (at least,
by quoting Morita theory). The other direction is given in the exercises.

4. GALO1S DESCENT — TWISTED FORMS AND OBSTRUCTIONS

The fundamental question of Galois descent is the following: given a G-Galois
extension of commutative rings S/R, how can one go between algebraic structures
over R and algebraic structures over S? We can phrase this in terms of two concrete
questions:
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Question 4.1. Given an R algebra A, how can we describe all R algebras A’ such that
ARS=A"®S?

Question 4.2. Givenan S algebra B, when can we find an R algebra A such that AQS = B?

TwisTED FORMS AND H?

Question 4.1]is in large part the subject of the exercises, and we recall here the
conclusions. In the context of Theorem we can reframe this first question as
follows. Given a semilinear action of G on an S-algebra B (for example, B = S® A),
how can we describe all other semilinear actions on B. These other actions, via
Theorem would correspond to R-algebras A’ such that S® A’ = B. Recall the
following definitions:

Definition 4.3. Let X, Y be sets with action by a group G. Then we obtain a natural
action on the set of maps Map(X, Y) via (0 - f)(x) = o(f(01(x))).

Definition 4.4. Let G, A be groups, and suppose we have a homomorphism G —
Aut(A) providing an action of G on A. We say that a map o : G — A is a crossed
homomorphism, or a 1-cocycle, if

a(ot) = a(o)o(a(r)), Vo,teG.
We write Z!(G, A) for the set of all crossed homomorphisms.

Definition 4.5. The group A acts on Z!(G, A) via (a - a)(0) = aa(o)o(a)~!, and we
define H'(G, A) = Z!(G, A)/A to be the set of orbits under this action.

We note that in the case A is an Abelian group, this corresponds to the standard
group cohomology construction, and the sets Z!(G, A) and H'(G, A) have natural
group structure given by pointwise multiplication in A. In general, however, these
are just sets with distinguished elements (pointed sets), where the distinguished
element comes from the crossed homomorphism G — A sending all elements to
the identity.

Proposition 4.6. Let B be a G-semilinear S-algebra, with action written as (o,b) — ob.
Consider the G-action on Auts(B) given by Definition Then if we have any other
G-semilinear action on B, (0,b) — o - b, then we may find a crossed homomorphism
a: G — Autg(B) such that
0-b=a(o)ab,

and this gives a bijection between crossed homomorphism and semilinear actions.

Further, if a, B € Z' (G, Auts(B)) are crossed homomorphisms, then the resulting semi-
linear algebras are isomorphic if and only if o and B are in the same Auts(B) orbit. In

particular, we have a bijection between isomorphism classes of algebras A’/R such that
S® A’ = B and the pointed set H' (G, Auts(B)).

DESCENT OBSTRUCTIONS AND H?

We now consider the Question[4.2]- given an S-algebra B, when can we find an
R-algebra A such that S ® A = B? In light of Theorem this is equivalent to
asking the question of when we are able to define a semilinear action of G on B.

To make this easier to work with, let’s define a bit of language:
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Definition 4.7. Let B be an S-algebra and let 0 be an automorphism of S. We define
a new S-algebra, denoted ’S to have underlying set °x, x € S (that is, there is a
bijection between the elements of B and °B), with operations:
xtly="(x+y), (C)Cy)="(y), Vxyeb
and with S-module structure given by:
A% =0 (A)x), VA e S, xeB,
or in other words, (1) %x = ?(Ax).

Example 4.8. As an example, note that if B is an S-algebra with a free S-module basis e;
and with multiplication table given by

616]‘ = Zcf,jek,
k
then the algebra °B has multiplication table given by
‘ei’ej = Zo(cﬁfj) “eg.
k

Now, back to the case of a G-Galois extension S/R and an S-algebra B, we would
like to ask whether or not it is possible to define a semilinear action of G on B. This
amounts to defining, for every o € G a “possible action,”

¢s:B—B

which will satisfy ¢s(Ax) = 0(A)ps(x) for A € S, x € B, and such that ¢ps; = Pyr.
One complicating factor is that such maps ¢, are evidently not S-linear, but we can
change our perspective by considering the corresponding maps i, : °B — B given
by ¢s(“x) = ¢o(x). For this map, we find

Pa(A7x) = a("(071(1)x) = Po(07 (A)x) = Apa(x) = Atpa("x),
which allows us to encode the information of ¢, as an S-linear map 1,. If we let

0 : B — B denote the map x — °x (which we can think of as a “universal” o-linear
map), then we can consider this via the following diagram

Yo

[ PR

1

B——B

(7)0
as P, (x) = o(¢s(071x)). More generally, we may “twist” these to obtain maps

GIJ)T

CTTB N D'B

'B——B

Ulp_[ L N UB,
7= (Yo ("x)) = T (x).
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This perspective allows us to interpret the condition ¢,¢; = ¢, in terms of
S-linear maps. That is, we have

Yor : B — B,
7x = o (x),

and,

lpo‘o l,l}‘[ : 0T B s B,
TX = e ().
Consequently, the condition ¢,;¢p; = ¢4, corresponds to the condition 5 = ;1.
Analyzing the possibilities, we see:

Case 1: “B and B are not isomorphic for some o € G.
In this case, there is no possible way that ¢ can act on B, and so no hope for defining
a semilinear action of B. Consequently, there is no algebra A/R such that S® A = B.

Case 2: There exist isomorphisms ¢, : ’B = B for each o € G.
In this case, we need only consider whether or not these can be chosen so that i;; =
1Y;°Y,. Tomeasure our “distance” from this condition, and make a connection with

group cohomology, we define
B(0,7) = Y5 Yo ¥e € Auts(B).

We are successful if we can choose ¢, so as to make (o, 7) = 1 for all g, 7. Tracing
the following diagram:

Pory

JTIPV
(TT)/B m gB % B

Yory

we find

Blom,y)B(o,7) = Blo, 7y) Y BT, Y)Yy -

which we can think of as a nonabelian version of a 2-cocycle condition, although
we won't try to define this “cohomology set” precisely here.

Of course, changing our isomorphisms ¢, (and hence the maps ;) will alter our
choice of f’s. More precisely, if ¢/, : B — B is another o-linear isomorphism, with
corresponding isomorphism ¢, : °B — B, we see that /¢, = p(c) € Auts(B),
and so ¢, = p(0)y, for some unique automorphism p(c), and conversely, different
choices of isomorphisms i correspond to arbitrary functions p : G — Auts(B).
Given such a p corresponding to ¢’, we find that the corresponding g’ is given by

B'(0,7) = (W) 96 Wr = i ploT) T p(0)hs “p(T) “ipe.

1note, this is a somewhat different convention than the one we did in class
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In general, this is a difficult formula to interpret, but with sufficient commutativity,
it will reduce to the standard notion of 2-cocycles and their equivalence via differing
by a coboundary.

We note that the previous machinery, which was introduced in the context of ring
extensions, works perfectly well for schemes as well. Let’s gather these definitions
and observations in this situation:

Definition 4.9. Let X = (X, Ox) be a scheme and let A be a quasicoherent sheaf
of associative Ox algebras. We say that A is Azumaya if for every affine open set
SpecR = U < X, A(U) is an Azumaya algebra over R.

We see, essentially as a consequence of Proposition[I.4} that we can characterize
Azumaya-ness as follows. Here for a scheme X and a point x € X, we write x(x)
for the residue field of x — that is, x(x) = Ox/mx,. If ¥ is a sheaf of Ox algebras,
we write 7|, to mean 7 ®o,, k(x).

Proposition 4.10. For a scheme X and A a locally free and finitely generated sheaf of
associative Ox algebras, the following are equivalent:

(1) Ais Azumaya,

(2) for every point x € X, Al is a central simple algebra over x(x),

(3) the sandwich map A Qo AP — &ndo,(A) is an isomorphism (here &nd
denotes the endomorphism sheaf).

Proof. We leave the verification of this as an exercise, via Proposition[1.4} |

Next, we define the notion of an étale morphism, relying on the corresponding
definition for rings from Definition [2.4]

Definition 4.11. Let f : X — Y be a morphism of schemes. We say that f is étale
at x € X if there exists an affine open neighborhood SpecB = V c X of x, and an
affine open neighborhood Spec A = U < Y containing f(U), such that B is an étale
ring extension of A.

One thing that this definition should emphasize is that this definition is local on
Xﬂ The following definition connects more directly to Definition

Lemma 4.12. Let f : X — Y be a morphism of schemes. Then f is étale if and only if
it is flat, locally of finite presentation, and for every y € Y, the fiber X, = X xy y is the
spectrum of an étale (commutative ring) extension of the field x(y).

Proof. [Sta24, Tag 02GM] ]

Let’s now define the notion of a Galois extension of schemes. Note that, unlike
the case of étale ring extensions, Galois extensions of rings are necessarily flat and
locally free of finite rank. In particular, these are module finite maps. It follows
that the corresponding type of map for schemes would be a finite map, and as
such would be affine. Hence, we can talk about Galois extensions either as mor-
phisms of schemes f : X — Y, or as coherent sheaves of commutative Oy-algebras
corresponding to f,Ox.

235 an illustrative example, the doubled affine line mapping to the affine line is, locally on the
domain, an isomorphism and hence étale
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|

need to fill in this
section

|

10 DANNY KRASHEN

Definition/Lemma 4.13. Let Y a scheme and R a sheaf of commutative Oy algebras,
which are locally free of finite type as Oy-modules. Suppose that G is a finite group of
Oy-linear automorphisms of R. We say that f is a G-Galois extension if the following
equivalent conditions are true:

(1) for every open affine SpecS < Y, R(Spec S)/S is G-Galois,

(2) the sheaf of algebras (R, G, 1) is Azumaya over Oy,

(3) the natural map (R, G,1) — &ndo, (R) is an isomorphism,

(4) foreveryy € Y, R|, is a G-Galois commutative ring extension of the field «(y) (as

in Definition/Lemma 2.5 Definition/Lemmal[2.3).

The machinery of Section i goes through as previously described, and we will
work through it via an example:

4.1. Galois descent for line bundles.

5. ETALE DESCENT — AN EQUIVALENCE OF CATEGORIES

We would like to ask a question which is analogous to those we asked in
Section |4} in the context of morphisms of schemes. Namely, for a morphism of
schemes 1 : X — U, how can one go between structures on U and structures on X.
That is, we have a natural functor 7t*, taking sheaves on U to sheaves on X. In some
sense, this is a forgetful process. We would like to know how much information is
lost, and what additional information is needed to “go backwards.”

We will use the psychological crutch of considering the case that X is a disjoint
union of schemes X = Lil; so that the individual morphisms 7; : U; — U are étale
morphisms. But we will visualize these maps as open covers in terms of intuition.
We will write U for the fiber product U; xy Uj, which we will think of as the
analog of the intersection of two open sets. Similarly we define U; ;; as the triple
fiber product U; x; U; x ; Uy, etcetera. We write 7; ; to denote the map U; x g U; — U
(via the equal morphisms induced by 7; or 7).

In order to reduce the notational clutter, if .# is a sheaf of Oy-modules, we will
write .7 |; ; to denote the sheaf n;‘,‘j%,j, and similarly for triple fiber products, etc.

So as to eliminate all possible suspense, let us simply give the “answer:” We first
recall the notion of an étale covering:

Definition 5.1. Let U be a scheme and % = {m; : U; — U} a family of morphisms.
We say that % is an étale covering of U if for all 7, ; is an étale morphism, and if
the family is jointly surjective. That is, if for every y € U a scheme-theoretic point,
there exists u € U, for some i a scheme theoretic point, such that 7;(u) = y.

Definition 5.2. If % = {n; : U; — U} is a family of morphisms, we define
the descent category Desc(%,QCoh) to be the category whose objects are pairs
((Fi), (¢i)) where each F; is a quasicoherent sheaf over U; and where ¢; ; : Fil;; —
¥ lij are isomorphisms such that for all 7, j, k, we have

Piklijk = Qjklijx © Pijlijk-

Note that in the case where % is an open covering, this is just describing gluing
data for sheaves (see [Har77| Exercise I1.1.22]). We say that descent holds if sheaves
are exactly described by such gluing data. Note that there is always a canonical
functor QCoh;; — Desc(%,QCoh) taking a sheaf 7 on U to the tuple ((¥1;), (1;;)),
where 1;; represents the canonical identification of F;|;; with 7 |;|;; (both being
canonical equal to ; ;).
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Theorem 5.3 (Etale descent). Let {m; : U; — U} be an étale covering. Then the natural
functor QCohy; — Desc(%,QCoh) given by F — ((¥F1i), (1)) is an equivalence of
categories.

Proof. See (for a somewhat more general context) [Sta24), Tag 023T]. O

6. SITES, SHEAVES AND STACKS

In fact, and possibly we should have started here, descent is closely tied to the
notion of a sheaf itself in the context of a Grothendieck topology.

Definition 6.1. Let C be a category. A Grothendieck topology 7 on C is a set whose

elements are collections of morphisms with common codomain {U; — U};e;, which

we call covers, with the following properties:

1) if {U’ — U} is a family consisting of a single isomorphism, then {U’ — U} € 7,

2) if {U; — U} € Tand V — U is a morphism in C then the fiber products U; xy V
existand {U; xy V — V} e,

3) if {U; — U} € tand if {V;; — U;} € 7 for each i, then the family obtained by
compositions {V;; — U} is also in 7.

We define a site to be a pair C = (C, T) where C is a category and 7 is a Grothendieck
topology on C.

6.1. Sheaves on sites.

Definition 6.2. LetCbeasiteand . : C°P? — D a presheaf (=contravariant functor)
with values in some other category D. We say that .7 is a sheaf if for every cover
{U; — U}, the natural map .7 (U) — [ [ .Z (U;) realize .# (U) as the equalizer of the
diagram

[ [Fu) =] [F;)).
i ij

Note that in particular, if C has an “empty set” in the sense of an object ¢ for
which the empty set is a cover of (¢, then it would follow that for .# a sheaf,
Z () would be a terminal object in D (so, for example, a singleton in Sets, the
zero group in Abelian groups, or the zero ring in Rings).

Theorem/Exercise 6.3. Sheaves satisfy descent. That is, for a site C and a covering % =
{m; : U; — U}, the natural functor Shv,; — Desc(%,Shv) given by F — ((F1:), (1;}))
is an equivalence of categories.

Proof idea. Verification of the fact that this map is fully faithful is relatively straight-
forward. For essential surjectivity, this amounts to extending a sheaf on a cover toa
sheaf on the whole space U via application of the sheaf axiom of Definition[6.2]and
then checking that this indeed defines a sheaf (i.e. that the sheaf axiom continues
to hold on general covers). |

Remark 6.4. This idea can be extended to sheaves with extra structure — that is
to say, the same result will hold when considering sheaves of groups, sheaves of
Abelian groups, sheaves of rings, sheaves of modules or algebras over a given
sheaf of rings, etcetera.
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6.2. Stacks on sites. We begin with a notion which is a weak analog of a functor
in a 2-categorical context. While we won’t recall the full definition of a (strict) 2-
category, we note the relevant structures for the 2-category Cat of categories, which
are the horizontal and vertical compositions of natural isomorphisms.

For categories A, B, the collection of functors F : A — B themselves form a cate-
gory, and the morphisms in this category are refered to as natural transformations.
We use double arrows to denote these natural transformations as in a : F = G.
Composition in this category of functors we refer to as vertical composition. On
the other hand, if we have categories A, B, C, functors FG: B —- Cand H: A — B
and a natural transformation @ : F = G, we obtain a natural transformation
aoH : FH — GH, which we call the horizontal composition of @ and H. As these
can be notationally cumbersome, we will occasionally simply write a in place of
aoH.

Definition 6.5 (pseudofunctors). Let C be a category. A psudofunctor from C
valued in categories .7 : C — (at is a rule which associates

(1) to every object U € C a category .7’ (U),

(2) to every morphism f : U — Vin C a functor .7 (f) : #(U) — #(V),

(3) to every pair of composable morphisms, g: U — V, f : V — W, a natural
transformation . (f, §) : L (f).(g) = L (fg).

These should satisfy the following axioms:

(@) . (idy) coincides with the identity functor id & (;;y on the category .7 (U),

(b) given a triple of composable mapsh: U — V,g: V - W, f: W — Z,
we can apply Z(f,g) o L (h) : ()L ()7 (h) = L (fg) (h), followed
by (fg h) : S (fg)S(h) = (fgh) to obtain natural transformation
()7 (9)L (h) = Z(fgh). A similar natural transformation can be ob-
tained by first applying . (f) o .#(g, h) and then . (f, gh). We require that
these compositions coincide. That is, that:

S (f& (L (f.8) 0 L (h) = L (f,gh)((f) -7 (g, 1))

as natural transformations from . (). (). (h) to . ( f gh) between func-
tors from U to Z.

Notation 6.6. Let C be a site and let {r; : U; — U} be a covering in C. We will
use the notation U; j to denote the fiber product U; xy U; in C, and U, jx to denote
U; xy U;j xy Uy, and so on.

If . : C* — Catis a pseudofunctor, and s € . (U), we will write s|; to denote
& (m;)(s). Similarly, if we write T(f,]. for the canonical map U; xy U; — Uj, then for

s).
si € (U;), we will write s;|; ; to denote Y(nﬁj)(si), and so on.

Definition 6.7 (Descent data). Let C be a site and let . : C” — Cat be a pseudo-
functor. Let % = {m; : U; — U} be a covering in C. We define the descent category
Desc(%,) to be the category whose objects are pairs ((s;), (¢;;)) where each
si € .7(U;) and where ¢; ; : s;|;; — s/|;; are isomorphisms such that for all i, j, k, we
have

¢i,k|i,j,k = (Pfrk'i,]',k ° (Pi,]'|j,]‘,k'
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A morphism of descent data f : ((si), (¢i;)) — ((t:), (i;)) consists of morphisms
fi - si = t; which yield commutative diagrams:

®ij

Si|i,j > Sj‘i,]'
ﬁl lfi
til.

—tj. .
ij Vi Ji,j

Remark 6.8. If Cisasite, . : C% — Catisa pseudofunctor,and % = {r; : U; — U}
be a covering in C, then we can define a functor

€:.7(U) — Desc(%,)

which is describe on objects as follows. Write 7t; : U; — U, 7;; : U;; — U and nfj :

U;; — U;. For an object s € (U), we let e(s) = (s|;,1;;) where 1, : s|1-|7.,j — s\]-|l,j
denotes the canonical identification given as:
1,
s|i|i,j : sl
[ il
S ) S (m)(s) Sl )7 (7)(5)

1,] L]
S ) () m

! S (15)(s)

Definition 6.9 (stacks). Let C be a site. We say that a pseudofunctor .7 : C% — Cat
is a stack if for every covering % = {m; : U; — U} in C, the natural functor

€: . (U) - Desc(%,5)
from Remark|6.8]is an equivalence of categories.

Now, conventionally stacks are restricted to having images in groupoids instead
of general categories, although this is not particularly essential.

Definition 6.10 (groupoids). We say that a category G is a groupoid if each of
its morphisms is invertible. Let ®pd be the sub 2-category of Cat consisting of
groupoids.

Definition 6.11 (stacks (conventional definition)). Let C be a site. We say that a
pseudofunctor . : C¥ — ®pd is a stack if for every covering % = {m; : U; — U}

in C, the natural functor
€:.7(U) — Desc(%,.7)
from Remark|6.8]is an equivalence of categories.

6.3. The site of a stack. Given a site, we can now talk about the notion of stacks
on the site. It turns out, that associated to any such stack is another site, which we
can think of as analogous to the espace étale of a sheaf.

Definition 6.12. Let C be a site and let . be a stack on C. We can associate to .¥ a
site s(S) which comes equipped with a functor s(S) — C. The objects of s(S) are
pairs (U, s) where U € C and s € .(U). A morphism (U, s) — (V,t) is a pair (f, $)
consisting of a morphism f € Hom¢ (U, V) and an isomorphism ¢ : s — Z(f)(t).
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We say that a family of morphisms {(U;,s;) — (U s)} is a covering family if the
collection {U; — U} is a covering family in C. The functor s(.¥’) — C is given by
(Us) — U.

To motivate this definition, we should be thinking of . (f)(f) as playing the role
of apullback of t along themap f : U — V (in this analogy, we are thinking of s and ¢
as representing, for example, families of schemes over U and V respectively). From
this perspective, it is reasonable to denote . (f)(t) as t|y. Intuitively, therefore, to
find a morphism s — t which is compatible with the morphism f : U — V is
equivalent to finding a map from s to the pullback |y = . (f)(#).

Remark 6.13 (Relation to fibered categories). One may also define stacks using the
equivalent formulation of fibered categories. While we won't go into this definition
here, we note that for a stack .% on a site C, the functor s(.¥) — C has the structure
of a fibered category, and will yield a stack via the standard definition in terms of
such fibered categories.

7. ETALE (AND GENERAL) DESCENT — TWISTED FORMS AND OBSTRUCTIONS

Let us now ask the same questions we asked before for étale covers, which we
asked previously for Galois extensions. In fact, in light of Remark|[6.4, we can really
consider this in the context o a general site, perhaps with a sheaf of rings. We
will ask this concretely in the context of quasicoherent sheaves of algebras over
schemes with respect to the étale topology, and we will phrase things in this way,
but we could also ask this for other types of algebraic structures over more general
sites as well. So, suppose that {r; : U; — U} is an (étale) covering. We may ask the
following questions:

Question 7.1. Given a sheaf of Oy algebras A, how can we describe all other sheaves of
Ouy-algebras A’ such that 7} A = 1 * A for all i?

Question 7.2. Given sheaves of Oy, algebras B;, when can we find a sheaf of Oy algebras
A such that 7 A = B; for each i?

As before, we will write, for notational convenience, such things as ‘A|; for n;“ﬂ.

TwisTED FORMS AND H?

To answer Question[7.1, we note that by Theorem it suffices to consider the
following question: if we are given descent data B, = ((8B;), (¢;)) for an algebra
with respect to the cover U = {U; — U}, we need to consider what other possible
descent data we are able to define. Before we proceed, let’s make a quick notational
comment:

Clarification 7.3 (Automorphisms of sheaves versus sheaves of autmorphisms).
Here when we have a sheaf of algebras A and we write Aut(A), what we mean
is the group of automorphisms of the sheaf A. That is, such an autormophism
is a natural transformation of functors (i.e. a morphism of presheaves) A — A.
One may also consider the automorphsim sheaf 7ut which on some U is defined
via ut(U) = Aut(Ay). This should not be confused with the presheaf which
associates to each U the group of automorphisms of the value of the sections on
U, Aut(A(U)). However, one can check that &/ut(A) is the sheafification of this
presheaf and Aut(A) is the group of global sections of the sheaf o/ut(A).
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Similarly, for sheaves of algebras A, A’ we can analogously define the sheaf of
isomorphisms .#so(A, A’) and its global sections Iso(A, A’') consisting of “global
isomorphisms.”

In analogy to Definition our descent data 8B, gives rise to descent data for
its automorphisms — that is, we can define descent data ((</ut(8;)), («Zut(¢;;)))
for a sheaf (and hence an étale sheaf by Theorem/Exercise which we could call
g/ut(B.) as the sheaf «/ut(B;) on U; and with

ISO(B[L‘,]‘, Bj‘i,j) E] dut(cpi,]-) : JZ/ut(Bi)h,]‘ — Mut(Bj)\i,j

viafor V — U;jand f € Aut(8;)(V), we have Aut(¢; ;) (V)(f) = ¢ijlvf qbl*]l|v

Note that in the case B, arises from a sheaf of Oy-algebras A, we would simply
have that the descent data for 8 would be given by ((Al:), (idx),,)) and Aut(B)
would be given by ((Aut(Al;)), (Aut(idz,;))) corresponding simply to the sheaf
Aut(A). In fact, by Theorem such an A always exists, so we can assume,
without loss of generality, that B, has this form. This gives a significant notational
simplification.

With this in mind, we can assume we start with a sheaf of algebras A, and
want to find all possible descent data of the form ((Al;), ;). In this context,
lzbi,j € Aut(?{|,-,j)

Definition 7.4. For a sheaf of groups % on a site C and a cover U = {U; — U}, we
define the pointed set Z' (U, N) = {(i;) € [TA(Uij) | Yix = Yjxi }-

The following is essentially immediate from the defnitions:

Lemma?7.5. Let Abeasheaf of algebras. Then we have a bijection between Z' (U, o/ ut(A))
and descent data of the form ((A;), (Vi )).

In this way, we have parametrized all possible A’ such that A'|; = Al;, however
there is some amount of double counting. That is, we may have different descent

datum ((A;), (¢i)), ((A), (1/)5])) which are isomorphic (as descent data) and

8. (MosTLY MARCH 27) AZUMAYA ALGEBRAS OVER LOCALLY RINGED SPACES

In this section, we'll consider the notion of Azumaya algebras in the context of
locally ringed spaces. So, suppose that X is a site (that is, a category equipped with
a Grothendieck topology as in Definition [6.1), together with a sheaf of ringes Ox.
In principle there may be many ways to try to define the notion of an Azumaya
algebra over X. For example, we could say that it is a sheaf of Ox-algebras A such
that the natural map A®q, AP — &ndop, (A) is an isomorphism, or we could use
one of the many other notions motivated by Proposition[1.3] In fact we will use one
which was not part of our prior characterization of Azumaya algebras over rings
(see Proposition , and it won’t be until a bit later until we see that these notions
are compatible (see ??).

Definition 8.1 (Azumaya algebras over a ringed space). Let X = (X,0x) be a
ringed space. We say that a sheaf of algebras A is Azumaya of rank # if for every
object U in X, there exists a covering {U; — U} such that the restriction Ay, is
isomorphic to the sheaf of matrix algebras M,,(Ox).
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As before, we can define both a monoid structure on the collection of isomor-
phism classes of Azumaya algebras, and an equivalence relation which turns this
monoid into a group. Recall that if X is a locally ringed space, a sheaf V of Ox-
modules is locally free of rank # if for every U € X, there exists a covering {U; — U}
such that V|y, = O.

Definition 8.2. We define an equivalence relation on the isomorphism classes
of Azumaya algebras, called Brauer equivalence to be the equivalence relation
generated by the relation consisting of A ~ AR®op, &ndo, (V) where V is a locally
free sheaf of Ox-modules of rank n for some .

Definition 8.3 (Azumaya Brauer group). For a ringed space X, we define the
Azumaya Brauer group Br*(X) of X to be the set of Brauer equivalence classes
[A] of Azumaya algebras A over X, with the operation [A] + [B] = [A ®o, B].

Verifying that this operation is associative and that [Ox] provides an additive
identity element is straightforward. To see that we have inverses, we note that
there is a canonical map

AR AP — &nd(A)
as before given by a ® b — (x — axb). To finish, we need only check that this is an
isomorphism of sheaves of algebras, which is to say that for every U, there exists a
cover {U; — U} such that the restriction of this map to U; is an isomorphism. But
by definition Definition[8.1} restricting to U; allows us to assume that A = &£nd(V)
for some free Ox-module V. The result then follows from the observation that for
any commutative ring R, the natural map
M, (R) ® M, (R) — Endr(M,(R)) = M,2(R)
is an isomorphism. This in turn can be seen by observing the map on matrix units
€ij ® ek — (g = 0jpdigeic)

which is to say that if we regard M, (R) as having matrix units e, ) () relative to
a basis indexed by {1,...,n}?, we see this is described by

€ij @ Che = €(ie),(k,j)s
and hence is an isomorphism (as it takes an R-module basis to a R-module basis).
Definition 8.4 (Cohomological Brauer group). Let X be a ringed space. The coho-

mological Brauer group Br“"(X) of X is defined to be the group H?(X, G,,)""", that
is, the torsion part of the second cohomology with coefficients in the multiplicative
group.

To see how these groups relate to each other, we will need to consider the exact

sequence
1-G,—GL,—-PGL, -1,

and cohomology sequence
1) H'(X,G,,) —» H(X,GL,) - H(X,PGL,) — H*(X,G,,).
These sheaves of groups are defined as follows.

Definition 8.5. Let X = (X, Ox) be a ringed space. We define the sheaf of groups
GL, on X by U — GL,(Ox(U)), and G,, = GL;. We have a natural “diagonal”
map G,, — GL, and we let PGL, be the sheafification of the presheaf U —
GL,(0x(U))/Gn(0x(U)). That is, PGL,, is the sheaf quotient GL,,/G,,.
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8.1. (Not from lecture) When is the projective general linear group a quotient?
Somewhat unintuitively, it need not be the case that PGL,(U) = GL,(U)/G,.(U).
Indeed, we can understand this from examining aspects of the sequence (I). This
will take us a bit to unpack though:

unpacking the exact sequence (I). Via descent, we may interpret the pointed sets
H'(X,G,), H(X,GL,) and H!(X, PGL,) by considering the groups G, GL, and
PGL, as sheaves of automorphisms. In particular, we find that G,, is the sheaf
of automorphisms of Ox as a sheaf of modules over itself and GL, is the sheaf
of automorphisms of O as a sheaf of modules. Consequently, H'(X, GL,) is in
bijection with isomorphism classes of sheaves of modules over Ox which are
locally isomorphic to Of - that is, locally free sheaves of rank 7. In particular,
H'(X,G,,) corresponds to locally free sheaves of modules of rank 1. The natural
map G, — GL, diagonally then can be interpreted as taking a locally free sheaf N
of rank 1 to N", a locally free sheaf of rank n.

Let M, denote the sheaf of matrix algebras given by M, (U) = M,(Ox(U)).
In favorable circumstances (for example for X a locally ringed space, as we will
describe in Lemma(8.12Jand Proposition[8.13), we will find that conjugation induces
an identification of sheaves PGL,, = Aut(M,,). We think about the map GL, — PGL,
as taking an automorphism of R" to the corresponding “change of basis” on its
ring of linear transformations M, (R). We can then show that the map from GL, to
PGL, is given by associating to a locally free sheaf M of rank 7, its endomorphism
sheaf of algebras &nd(M).

Definition 8.6. Let N be a sheaf of Ox-modules. We say that N is n-free if N" = O%.

The n-free line bundles form a subgroup of the Picard group — if P, Q are n-free
then

(PRQ)"=PRQ®Oy =P®(Q®0y) =PROY = 0%,
and consequently, P ® Q is n-free as well.
Definition 8.7. Let X be alocally ringed space. Welet Pic(,,)(X) denote the subgroup
of Pic(X) consisting of those locally free sheaves of rank 1 which are n-free. If R is

a commutative ring, we similarly write Pic,(R) to denote Pic(,)(Spec R). That is,
isomorphism classes of projective R-modules N of rank 1 such that N* = R".

Lemma 8.8. For any ringed space X, Pic(,)(X) is n-torsion.

Proof. Let N € Pic(;)(X). Then N®" = A"N" = A"O} = Ox. O

Remark 8.9. As a partial converse to Lemma it follows from the structure
theory of modules over a Dedekind domain that Pic(,(R) is exactly the n-torsion
subgroup of Pic(R) in the case that R is a Dedekind domain. Indeed, for a Dedekind
domain, every projective module M is of the form M = R™ @ P for some rank 1
projective module P. In particular, if N € Pic(R) is n-torsion, then if we write
N" = R"~! ® P and we find

R=N®" = A"N"= A"(R"1@P) =P,

and so N" = R" which tells us that N € Pic(,)(R) as claimed.
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8.2. Relating the two Brauer group via Hilbert 90 spaces. We may attempt to
define a map Br*(X) — Br“"(X) as follows. For an Azumaya algebra A, we may
consider A as a twisted form of the sheaf of Ox-algebras M,,(Ox). We would like to
say that this is represented by a class in H! (X, PGL,) as would follow from the logic
of Lemma However, for this to work, we would need to know that the sheaf
o/ utg, (M, (Ox)) of automorphisms of matrix algebras is given by PGL,(Ox) — that
is, by conjugation. We knew that this was true in the case of fields by the Noether-
Skolem theorem, however in general this is an extra assumption. For the purposes
of the present conversation, we will make the following ad-hoc definitions:

Definition 8.10 (Hilbert 90 spaces). We say that a ringed space X is a Hilbert 90
space if the presheaf Pic(Ox) given by U — Pic(Ox(U)) is locally trivial (i.e. has
trivial sheafification).

We can refine this slightly as follows:

Definition 8.11 (Hilbert 90(n) spaces). We say that a ringed space X is Hilbert 90(n)
space if the presheaf Pic(,)(Ox) given by U — Pic(,)(Ox(U)) is locally trivial (i.e.
has trivial sheafification).

Now, if X is a locally ringed space, for example — that is, a topological space
with a sheaf of rings Ox such that Ox is a local ring for every point x € X, then it
is also a Hilbert 90 space, since projective modules over a local ring are free.

This will be a particularly useful concept for understanding the extent to which
Noether-Skolem will apply for us, as the following Lemma illustrates:

Lemma 8.12. Suppose Pic(R) = 0. Then the natural map PGL,(R) — Aut(M,(R)) is
an isomorphism.

Proof. For the commutative ring R, the concept of rank of a projective module
defines a function Spec(R) — IN.

Morita theory tells us that since R" is a projective generator in the category of R-
modules, we have an equivalence of categories between the category of R-modules
and the category of Endg(R") = M,,(R)-modules, and this equivalence takes R to
R". Let ¢ € Aut(M,(R)). We see that if N is an R-module which is projective of
rank 7, then its image R" ®g N is a projective M,,(R)-module which, viewed as an
R-module via the R-algebra structure of M, (R), is a projective R-module of rank
.

Precomposition with ¢ gives an auto-equivalence on the category of M, (R)-
modules, where an M, (R)-module P is taken to a new module with structure
givenby T -p = ¢(T)p. As this is a categorical equivalence, it preserves categorical
notions such as projectives and generators. Note that as every automorphism of
M, (R) preserves the R-algebra structure by definition, the R-module structure of
modules is left unchanged.

In particular, we obtain two different M,,(R)-module structures on R", the first
being the standard one, and the second given by T - v = ¢(T)v. Correspondingly,
this second structure corresponds to an R-module N which is also a projective
generator. Suppose N has rank r. Then it follows that R” has rank rn as an R-
module, which tells us that » = 1, or that N is a rank one projective module. As
Pic(R) = 0, it follows N = R which implies these two M, (R)-module structures
determine isomorphic modules. Therefore we have an isomorphism ) : R — R"
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of R-modules such that
T-¢(v) = ¥(To)
or in other words, ¢(T)y(v) = Y(Tv) or ¢(T) = YT~ as desired.

There is actually a bit more one could say here:

Proposition 8.13. Let R be a commutative ring. Then the natural map PGL,(R) —
Aut(M,(R)) is an isomorphism if and only Pic,(R) = 0.

Proof sketch. Looking more carefully at the proof, one can see that the two M,,(R)-
module structures on R” yield modules which are isomorphic as R-modules (by
construction). Hence, by the explicit Morita equivalence, if the latter corresopnds
to N as an R-module, then we must have an isomorphism N" = R". So, in fact, we
find the stronger conclusion that PGL,(R) — Aut(M,(R)) is an isomorphism as
long as there are no rank 1 projective R-modules N such that N" = R".
Conversely, if we have such an N, and we choose an isomorphism N" = R", we
find that we obtain two corresponding M,,(R) module structures on R"” where via
Morita theory, one corresponds to R and the other to N as R-modules. Hence these
are different M,,(R)-modules. However the isomorphism of R-modules N" = R"
induces an isomorphism of their endomorphism groups, which then gives an
automorphism of M,,(R) which is cannot be given by conjugation. |

Proposition 8.14. Let X be a Hilbert 90(n) space. Then we have an isomorphism of sheaves
of groups:
PGL,(Ox) — Aut(M,(Ox))
The following Lemma now follows immediately from descent:

Lemma 8.15. Suppose X is a Hilbert 90(n) space. Then we have a bijection between
isomorphism classes of Azumaya algebras of rank n and the pointed set H' (X, PGL,,).

In this case, we obtain a map Br*(X) — Br“*(X) via the boundary map
6 : HY(X,PGL,) — H*(X,G).
Lemma 8.16. Let A, B be Azumaya algebras over X. Then 6(A® B) = 6(A) + 6(B).

It follows that the map is injective — if A has trivial class in H?(X,G,,), then
it must be in the image of H!(X, GL,). But by our description of the sequence, it
follows that we then would have A = &nd(V) for some locally free sheaf V of
rank n. Hence [A] = 0 in Br**(X).

Proposition 8.17. Suppose X is a Hilbert 90(n) space for all n. Then we have an injective
group homomorphism

Br?(X) — Br(X).

9. SPECTRAL SEQUENCES: FROM CECH TO ARTIN-LERAY

There are many different spectral sequences we find in life, but in many ways,
there are only a few from which all others are derived. Or perhaps there is only
one. In any case, one candidate for such a “mother” spectral sequence is the Cech
sequence. Let X be a site and .% a sheaf of Abelian groups on .# (or a sheaf in some
appropriate Abelian category). This spectral sequence works as follows:

need to explain
why this lands in
torsion still!
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9.1. Cech combinatorics and simplicial objects. Given a covering {U; — U} in
X, we can consider, for every ordered tuple of indices i, = (io, i1, ..., 1) the iterated
fiber product

Ui, = Uiy xu Uj, xy -+ xu U,
if we write |i,| = p + 1 in the above situation, we can then set
u= ] u.
lis|=p+1

This collection comes with a natural collection of maps. For example, if

filpl={01,....p"} = {0,1,...p} = [p]
is any map which preserves the partial order <, we see that for any tuple i, with
lie| =p+1,if welet f(io) = (if),if), - - - if() ), then there is a corresponding map
on the fiber products in the other direction
Ui, = Us(in)

(given by the universal property of fiber products). Proceeding this way for each
index i, with |i,| = p + 1, we may put these together to obtain a map:

f* : U,, — Up/.

In other words, if A is the category of finite, linearly ordered sets and order preserv-
ing maps (which can be taken, up to equivalence, to consist exactly of the objects
[p] and maps between them), then the rule

[P~ U,
extends to a contravariant functor
Ue : A — X°P.
Composing this with the any presheaf ¢, we obtain a covariant functor
4(U,) : A — Ab

Definition 9.1. Let € be a category. A simplicial object in ¢ is a contravariant
functor ¥ : A — %. We write Z,, for L([n]).

Definition 9.2. A cosimplicial object in ¢ is a covariant functor Z : A — ¢. We
write =, for Z([n]) and we let d; : =,_1 — =, be defined as

dpi = S(6™ : [n— 1] — [n]),

where " is the unique order preserving map which misses only the index i € [1].
Letd, = Y/ o(=1)dy,.

Definition 9.3. Let = : A — C be a cosimplicial object where C is an Abelian

category. We define FI¥(=) to be the homology of the sequence

- dy - dpy1

p—1 =p =p+1-

—

Let us come back to the situation where .# is a sheaf of Abelian groups on a site
X, and given our covering U = {U; — U} and corresponding cosimplicial object
U,. We can define, for each g € IN, a presheaf .71 (.%) on X given by s¢1(%)(V) =
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H9(V,.#). Composing with the cosimplicial object U, gives a simplicial object
which we can concretely describe as:

AF)(U): A — Ab
[p] » HI(U,, Z) = || HI(U,,, F).
lie|=p
We finally can describe the Cech spectral sequence. Following convention we will
write HP (U, #°9(.F)) for HP (7(.F)(U,) below:
Proposition 9.4. Let X be a site and .% a sheaf of Abelian groups. Let U = {U; — U} be
a covering. Then there is a convergent spectral sequence of cohomological type:
B (U, #(F)) = HPT(U, F).
Proof. See [Sta24] Tag 030W]. o

9.2. From Cech covers to Galois covers. Suppose {X — X} is a G-Galois covering
of schemes. For a presheaf 4 on X, ¢ (X) carries a G-action. Let X, be the cosimplicial
scheme associated to this cover.

Proposition 9.5 (Artin-Leray Spectral Sequence). We have a natural isomorphism
between Cech and Galois cohomology groups:

H(4(X.)) = H'(G,9(X)).

In particular, if we are given a Grothendieck topology within which {X — X} is a covering,
then we obtain a convergent spectral sequence

HP(G,HY(X, F)) = H' (X, F).
Proof. TBD. ]

Lemma 9.6. Let X — X be a G-Galois covering of S-schemes for a finite group G. Then
we have an isomorphism X xx X = XC.

Proof. Considering G as the S-group scheme SC (a finite number of copies of S), we
have a map
GxX—>XxX
given by (g x x) — (x, gx) ]
10. THE BRAUER GROUP AND PICARD GROUP

In this section, we'll use the Artin-Leray spectral sequence (Proposition [9.5) to
understand the behavior of the Picard group/functor/moduli problem. Let’s start
with the moduli problem itself. We consider the following:

Goal: parametrize line bundles on a smooth projective variety X.

Now, what should this goal exactly mean to us? At the basic level, given X
a smooth projective variety over a field k, we’d like to construct a scheme Picy
whose k-points correspond to isomorphism classes of invertible sheaves on X.
Unfortunately, it turns out that this is generally impossible, even for X a curve!

Before going further, it should be mentioned that a very excellent reference for
understanding the Picard functor and its representability is the survey of Kleinman
in [Kle05].

Definition 10.1. Let X be a proper variety over a field k.


https://stacks.math.columbia.edu/tag/03OW

22 DANNY KRASHEN

11. (mostLY APRIL 1) THE BRAUER GROUP OF A LOCAL RING

(1) purity — Brauer group of punctured spectra in dimension > 1

12. THE BRAUER GROUP OF A COMPLETE DISCRETELY VALUED FIELD (TAME CASE)

(1) Hensel’s lemma and the correspondence between finite étale algebras (un-
ramified extensions) over a Henselian dvr and its residue field

(2) Existence of unramified splitting fields in the perfect case (and mention
Kato cohomology / differential forms / crystalline ideas for the bad charac-
teristic case)

(3) The short exact ramification sequence

13. (APRIL 8) RAMIFICATION, PURITY

more topics
14. SEVERI-BRAUER SCHEMES
15. FORMAL SMOOTHNESS, ETALENESS
16. GERBES
We recall the notion of stacks from Section[6.2

Definition 16.1. Let C be a site and .%” a stack on C. We say that .7 is a gerbe if

(1) for every U € C, there exists a cover {U; — U} in C such that .7 (U;) # &
(that is, the category has at least one object), and,

(2) for every U € C, and s,t € .#(U), there exists a cover {U; — U} in C such
that s|; = t|; for all i.

Definition 16.2. Let C be a site and u a sheaf of Abelian groups on C. A u-gerbe
is a gerbe . on C together with, for every U € C and s € .(U), together with a
coherent system of isomorphisms a; : u(U) = Autg(y)(s). More precisely, we ask

that for every morphism f : V — U in C we have a commutative diagram (writing
s|V for Z(f)(s)),

w(u) —= Aut () (s)

L j«/"(f)(S)

u(V) Aut gy (sly),

and for every morphism A : t — u in ./(U), we have a commutative diagram

A(slv)

Auty ) (t)

/”’7
linn,\

Auty(u) (M),

where inn, denotes the automorphism induced by conjugation.
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Proposition 16.3 (Giraud). Let C be a site and u a sheaf of Abelian groups. Then we
have a bijection of equivalence classes of y-gerbes on C and the Cech cohomology group

H2(C, ).
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APPENDIX A. SEMILINEAR SPACES (THE DESCENT DATA CATEGORY) WITH EXERCISES

Exercise 1. If E/F is a G-Galois extension of fields, show that the natural map
(E,G,1) — Endg(E)
x—[y—xy], xyeE
s — [y—o(y)], oceGyekE
gives an isomorphism of algebras.
Definition A.1. Recall that if E/F is a G-Galois extension, an E/F-semilinear vector
space is an E-vector space V together with an action of G on V such that for every
x€ E,veV,wehave
o(xv) = a(x)o(v).

A homomorphism of E/F semilinear vector spaces ¢ : V — W consists of an

E-linear map ¢ which commutes with the G-action in the sense that ¢(0v) = o(¢v).

Exercise 2. If V is an F-vector space then E ®r V is naturally an E/F semilinear
vector space, where the action of G is via the first factor.

Exercise 3. Show that we have an equivalence of categories between (E,G,1)-
modules and E/F-semilinear vector spaces.

Recall the following result which we claimed in the last lecture:

Proposition A.2 (Morita). Let R be a ring and P a right R-progenerator (i.e. finitely
generated, projective generator in the category of right R-modules). Let S = Endg(P).
Then the functor from R-modules to S-modules given by

N—P®rN

is an equivalence of categories. Further, if P* = Homg (P, R) then P* is an R — S bimodule,
and
M — P* ®s M

gives the (homotopy) inverse equivalence.

Exercise 4. Show that the functor from F-vector spaces to E/F-semilinear vector
spaces given by

V- VE =E ®F 1%
is an equivalence of categories.

Now, if we are interested in talking about algebraic objects (such as central
simple algebras), we need more than just vector spaces and linear maps, but we
also need the concept of the tensor product (for multiplicative structures).

Definition A.3. Suppose V, W are E/F semilinear vector spaces. Then V ®¢ W is
also a semilinear vector space with respect to the action:

ov®@w) =0(v) ®o(w).

Exercise 5. Show that the above definition gives a well defined E/F semilinear
space and that this commutes with the functor given above.

That is, show that if V, W are F-vector spaces, then we have a natural isomor-
phism of E/F semilinear vector spaces

VeE®e W = (VR W)E.
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More formally (if you like), this means you are showing that the two functors
(VW) = (VEQe WE) (Vi) — (V& W)E

from Vec/F x Vec/F to the category of E/F semilinear vector spaces are naturally
isomorphic.

From this point of view it makes sense to talk about E/F semilinear algebras.

Definition A.4. An E/F semilinear algebra is an E/F semilinear vector space A,
together with an E/F-semilinear map

m:AQrA— A

and an E/F-semilinear map
1:E—-A

which gives A the structure of an algebra (where (1) = 1 is the multiplicative
identity of A).

Exercise 6. Show that an E/F semilinear algebra is just an E-algebra A with a
semilinear action of G on A as a vector space such that o(ab) = o(a)o(b) (i.e. such
that G acts via ring isomorphisms).

Exercise 7. Show that we have an equivalence of categories between F-algebras
and E/F-semilinear algebras given by A — E ®f A.

Exercise 8. It follows from the above exercise that if welet F = R and E = C,
then we have an equivalence between R-algebras and C-algebras with a notion of
conjugation (action by Gal(C/R)). In particular, if we consider the R-algebras H
and M;(R), we see that

C®RrH = Mz(C) = C®r Mz(]R)

and so as C/R semilinear algebras, both of these algebras are given as M, (C) with
two different notions of conjugation. What are these notions of conjugation?

APPENDIX B. TWISTED FORMS (THE GLUING PROBLEM) WITH EXERCISES
Throughout the section, let us fix E/F a G-Galois extension.

Definition B.1. Let A be an F-algebra. We say that an F-algebra B is a(n E/F-)twisted
form of A if there is an isomorphism of E-algebras, Ar = Bg.

Note that we are not assuming here that we have an isomoprhism of E/F semi-
linear algebras (which would imply they were isomorphic over F), but just as
E-algebras.

As we saw in the previous section, we can recover the structure of B from Bg
by specifying a semilinear action. As we are able to identify Ar and Bg, our quest
to understanding the possible B’s we may have then reduces to understanding all
possible semilinear actions of G on Ag.

Definition B.2. Suppose V is a vector space with an action of G. We define an
action of G on Aut(V) by (0¢)(v) = o(p(c7(v)).

Exercise 9. Show that in the case V = E", with component-wise action, the action
of the Galois group G = Gal(E/F) on Aut(V) = GL,(E) is given by the standard
action on the matrix entries.
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Exercise 10. Suppose ¢, : G — Aut(Ag) are two different semilinear actions of G
on Ag. That is, for 0 € G, we have ¢(a) = ¢(0)(a) and o(a) = ¢(0)(a) define semi-
linear actions (note here that ¢ and ¢ need not have values in E-automorphisms,
but in general just F-linear automorphisms).

Show that ¢(0) = a(o)y(o) for a map a : G — Aut(Ag) and « is a crossed
homomorphism (where the action of G on Aut(Ag) here is given by the previous
excercise via ).

Exercise 11. Show that the above correspondence gives, after fixing an algebra
A/F a bijection between semilinear actions on Ag and crossed homomorphisms
G — Auty (AE)

From this we see so far that for B/F a twisted form of A, given an isomorphism
¢ : BE — Ag, we obtain a new semilinear action on Ag which corresponds to the
algebra B/F via the equivalence of categories previously described. This semilinear
action, in turn gives rise to crossed homomorphism G — Aut(Ag).

It therefore is natural to ask: in what way does this semilinear action depend on
the isomorphism ¢?
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