Math 2260, Spring 2014, Practice Sheet for Exam 1

1. Compute the following integrals (various difficulty levels):
i. $\int \sin ^{3} x d x$
ii. $\int \sin ^{4} x d x$
iii. $\int \sin ^{3} x \cos ^{2} x d x$
iv. $\int \tan ^{2}(2 x) d x$
v. $\int_{0}^{\infty} e^{-x} \sin x d x$
vi. $\int x^{5} \sqrt{x^{2}+1} d x$
vii. $\int \frac{2 x}{x(x-5)} d x$
viii. $\int \frac{x^{4}+x+x^{2}}{x^{2}+1} d x$
ix. $\int \frac{x^{2}-4}{\left(x^{2}+1\right) x} d x$
x. $\int \frac{6 x^{2}-4 x+3}{2 x^{3}-2 x^{2}+3 x-5} d x$
xi. $\int \sec ^{3} x d x$
xii. $\int_{1}^{3} \frac{3}{\sqrt{x-2}} d x$
xiii. $\int_{0}^{3 / 2} \frac{d x}{\sqrt{9-x^{2}}}$
xiv. $\int_{0}^{3 / 2} \frac{d x}{9-x^{2}}$
2. Suppose that $f(x)$ is a function with an asymptote at $x=1$, so that as x approaches 1 from the right, $f(x)$ approaches ∞. Does it follow that

$$
\int_{1}^{5} f(x)
$$

diverges? Why or why not?
3. Challenging integral:

$$
\int x \arctan x d x
$$

4. Explain why the integral

$$
\int_{1}^{\infty} \frac{\sin x}{x^{2}} d x
$$

converges. (hint: what if the $\sin x$ wasn't there?)
5. Use the previous problem to explain why

$$
\int_{1}^{\infty} \frac{\sin x}{x} d x
$$

also converges. (hint: use integration by parts)
6. Consider the graph of the function $y=e^{x}$ from $x=0$ to $x=\infty$. If we were to take the area between this graph and the x -axis, and revolve it around the x -axis, would the total volume of the resulting solid be finite or infinite? If it is finite, what is the total area?

