Math 2260, Spring 2014, Practice Sheet for Exam 1

1. Find the area of the regions described below:
a. The area between the graph of the function $2 \sin x+3$ and the x-axis, for $0 \leq x \leq \pi / 2$.
b. The area between the graph of the function $\sin x$ and the x axis, for $0 \leq x \leq 2 \pi$.
c. The area between the graph of the function $\frac{1}{4-2 x}$ and the x-axis, for $-1 \leq x \leq 1$.
d. The area in the first quadrant bounded by the graphs of the functions $f(x)=x^{2}$ and $g(x)=x$.
2. Calculate the following indefinite integrals:
a. $\int(\sin x) e^{\cos x} d x$
b. $\int \frac{1}{x \ln x} d x$
c. $\int \ln x^{1 / x} d x$
d. $\int \sin x \cos (\cos x) d x$
e. $\int \sin ^{3} x \cos ^{3} x d x$
f. $\int \frac{\sin (\ln x)}{x} d x$
3. Find the volume of the solid of revolution obtained by revolving the region in the first quadrant bounded by the lines $x=2$ and $y=2 x$
a. about the x-axis
b. about the y-axis
c. about the line $x=3$
d. about the line $y=10$
4. Find the volume of a solid of revolution with the following decription:

- the solid lies between the planes at $y=1$ and $y=3$,
- for a given y-value, the cross-section is a square whose diagonal has length $\frac{\ln y}{y}$.

5. Find the volume of a solid of revolution with the following decription:

- the solid lies between the planes at $y=5$ and $y=6$,
- for a given y-value, the cross-section is an elliptical oval whose surface area is $y^{2}+y$.

6. Write down an integral which would be used to compute the following volume of the solid of revolution:
a. The region in the first quadrant bounded by the graphs $f(x)=x^{2}$ and $g(x)=x$ rotated about the y axis.
b. The region in the first quadrant bounded by the graph $x=y-y^{3}$, rotated about the y-axis.
7. Write down an integral which expresses the arclength of the curve described by
a. $\quad x(t)=t \sin t, y(t)=t^{2} \cos t, 0 \leq t \leq 2 \pi$
b. $x(t)=t^{3}-t^{2}, y(t)=\sqrt{t}$
c. $y=\sin x, 0 \leq x \leq \pi$
8. Write down an integral which expresses the surface area of the surface of revolution described by
a. rotation of the curve $y=x \sin x, 0 \leq x \leq 2 \pi$ about the x-axis
b. rotation of the parametric curve $x=y^{2}-\cos y, 0 \leq y \leq 2 \pi$ about the y-axis
9. Write down the surface are of the surface of revolution obtained by rotating the line segment $y=3 x+4,0 \leq x \leq 1$ about the x-axis.
10. (challenge!) Calculate the volume of the solid described as follows:

- the solid lies between the planes at $y=1$ and $y=4$,
- for a given value of y, the cross-section at y is a rectangular region with side lengths $a(y)$ and $b(y)$,
- the function $b(y)$ is the derivative of the function $a(y)$: that is, $\frac{d}{d y} a(y)=b(y)$,
- $a(1)=2, a(4)=10$.

11. (challenge!) Use the formula for the surface area of a surface of revolution to derive the formula for the surface area of a sphere of radius r.
