- 1. Find the area of the regions described below:
 - a. The area between the graph of the function $2\sin x + 3$ and the x-axis, for $0 \le x \le \pi/2$.
 - b. The area between the graph of the function $\sin x$ and the x axis, for $0 \le x \le 2\pi$.
 - c. The area between the graph of the function $\frac{1}{4-2x}$ and the x-axis, for $-1 \le x \le 1$.
 - d. The area in the first quadrant bounded by the graphs of the functions $f(x) = x^2$ and g(x) = x.
- 2. Calculate the following indefinite integrals:

a.
$$\int (\sin x)e^{\cos x} dx$$

b.
$$\int \frac{1}{x \ln x} dx$$

c.
$$\int \ln x^{1/x} dx$$

d.
$$\int \sin x \cos(\cos x) dx$$

e.
$$\int \sin^3 x \cos^3 x dx$$

f.
$$\int \frac{\sin(\ln x)}{x} dx$$

- 3. Find the volume of the solid of revolution obtained by revolving the region in the first quadrant bounded by the lines x = 2 and y = 2x
 - a. about the *x*-axis
 - b. about the *y*-axis
 - c. about the line x = 3
 - d. about the line y = 10
- 4. Find the volume of a solid of revolution with the following decription:
 - the solid lies between the planes at y = 1 and y = 3,
 - for a given y-value, the cross-section is a square whose diagonal has length $\frac{\ln y}{y}$.

- 5. Find the volume of a solid of revolution with the following decription:
 - the solid lies between the planes at y = 5 and y = 6,
 - for a given y-value, the cross-section is an elliptical oval whose surface area is $y^2 + y$.
- 6. Write down an integral which would be used to compute the following volume of the solid of revolution:
 - a. The region in the first quadrant bounded by the graphs $f(x) = x^2$ and g(x) = x rotated about the y axis.
 - b. The region in the first quadrant bounded by the graph $x = y y^3$, rotated about the y-axis.
- 7. Write down an integral which expresses the arclength of the curve described by
 - a. $x(t) = t \sin t, y(t) = t^2 \cos t, 0 \le t \le 2\pi$
 - b. $x(t) = t^3 t^2, y(t) = \sqrt{t}$
 - c. $y = \sin x, 0 \le x \le \pi$
- 8. Write down an integral which expresses the surface area of the surface of revolution described by
 - a. rotation of the curve $y = x \sin x, 0 \le x \le 2\pi$ about the x-axis
 - b. rotation of the parametric curve $x = y^2 \cos y, 0 \le y \le 2\pi$ about the y-axis
- 9. Write down the surface are of the surface of revolution obtained by rotating the line segment $y = 3x + 4, 0 \le x \le 1$ about the x-axis.
- 10. (*challenge!*) Calculate the volume of the solid described as follows:
 - the solid lies between the planes at y = 1 and y = 4,
 - for a given value of y, the cross-section at y is a rectangular region with side lengths a(y) and b(y),
 - the function b(y) is the derivative of the function a(y): that is, $\frac{d}{dy}a(y) = b(y)$,
 - a(1) = 2, a(4) = 10.
- 11. (challenge!) Use the formula for the surface area of a surface of revolution to derive the formula for the surface area of a sphere of radius r.