Lecture 4: areas and volumes

- areas between curves
- volumes of solids via cross-sections

$$
\begin{aligned}
\int_{0}^{1}\left(x-x^{2}\right) d x & \left.=\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1} \\
& =\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

$$
\begin{gathered}
\int_{0}^{2}(\sqrt{x}-0) d x+\int_{0}^{4}(\sqrt{x}-(x-2)) d x \\
{\left[\frac{2}{3} x^{3 / 2}\right]_{0}^{2}+\left[\frac{2}{3} x^{3 / 2}-\frac{1}{2} x^{2}+2 x\right]_{2}^{4}} \\
\sqrt{x}=-1 / x=y^{2} \\
\sqrt{x}=x-2=y \longrightarrow x=y+2 \quad \begin{array}{l}
y^{2}=y+2 \\
y^{2}-y-2=0 \\
(y-2)(y+1)=0 \\
y-2)
\end{array}
\end{gathered}
$$

ar:

$$
y=2
$$

$$
\begin{aligned}
\int_{y=0}^{y-2}\left((y+2)-y^{2}\right) d y & =\left[\frac{1}{2} y^{2}+2 y-\frac{1}{3} y^{3}\right]_{0}^{2} \\
& =\frac{1}{2} 2^{2}+2 \cdot 2-\frac{1}{3} \cdot 2^{3}=\frac{10}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1}(\sqrt{x}-(-\sqrt{x})) d x \\
& +\int_{1}^{4}(\sqrt{x}-(x-2)) d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-2}^{\int_{-2}^{0}\left(0-x \sqrt{4-x^{2}}\right)} d x+\int_{0}^{2}\left(x \sqrt{4-x^{2}}-0\right) d y \\
& -\int_{-}^{0} x \sqrt{\frac{1}{4-x^{2}} d x} \quad \text { scratch work }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.=+\frac{1}{2} \int_{n=0}^{n-1 / 2} u^{1 / 2} d u+\left(-\frac{1}{2}\right) \int_{n=4}^{u^{\prime \prime 2} d u} \right\rvert\, \begin{array}{l}
u n-\cdots, \quad x=2 \rightarrow u=0
\end{array}\right] \\
& =\frac{1}{2} \int_{0}^{4} u^{1 / 2} d u+\frac{1}{2} \int_{0}^{4} u^{1 / 2} d u \\
& \left.=\left(\frac{1}{2}+\frac{1}{2}\right) \int_{0}^{4} u^{1 / 2} d u=\int_{n=0}^{n=4} u^{1 / 2} d u=\frac{2}{3} u^{3 / 2}\right]_{0}^{4} \\
& \frac{2}{3}\left(4^{3 / 2}-0\right) \\
& \left.\frac{2}{3}(t \sqrt{4})^{3}\right)=\frac{2}{3} 8 \\
& =\frac{16}{3}
\end{aligned}
$$

Aurally: $x \sqrt{4-x^{2}}=y$ is odd
dd: $\quad f(-x)=-f(x)$

$$
\begin{gathered}
f(-x)=(-x) \sqrt{4-(-x)^{2}}=-x \sqrt{4-x^{2}} \\
-f(x)=-x \sqrt{4-x^{2}}
\end{gathered}
$$

Volumes 's cross-sectrons

2-dims

2260 Fall 2014 Page 3

$$
\text { Area }=\int_{n} h(x) d x
$$

3 -dims

"Cavellev's Principle"

$$
V_{0 t}=\int_{a}^{b} A(x) d x
$$

$$
\begin{gathered}
\operatorname{deffr}_{r(x)}\left\{\begin{array}{l}
\left\{\begin{array}{l}
\text { stats at } \\
\text { ends at }
\end{array} \quad x=0\right. \\
r(x)=m x+b
\end{array}\right. \\
r(x)=-\frac{1}{4} x+1
\end{gathered}
$$

$$
\left.\left.\begin{array}{rl}
V & =\int_{0}^{4} A(x) d x
\end{array}=\int_{0}^{4} \pi r(x)^{2} d x\right] \text {. } \pi\left(-\frac{1}{4} x+1\right)^{2} d x\right] \text { } \begin{aligned}
& 4 \\
&=\pi \int_{0}^{4}\left(\frac{1}{16} x^{2}-\frac{1}{2} x+1\right) d x \\
&=\pi\left[\frac{1}{16} \frac{1}{3} x^{3}-\frac{1}{4} x^{2}+x\right]_{0}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& =\pi\left[\frac{1}{16} \frac{1}{3} x-\frac{-}{4} x+x\right]_{0} \\
& =\pi\left[\frac{1}{16} \frac{1}{3} 4^{2} \cdot 4-\frac{1}{4} 4 \cdot 4+4\right] \\
& =\pi\left[\frac{4}{3}-4+4\right]=\pi \frac{4}{3}
\end{aligned}
$$

 similar.

$$
\begin{aligned}
& V=\int_{-1}^{1} A(x) d x \\
& A(x)=\pi r(x)^{2}
\end{aligned}
$$

2260 Fall 2014 Page 5

$r(x)=?$

$$
\begin{aligned}
V & =\int_{-1}^{1} A(x) d x=\int_{-1}^{1} \pi\left(1-x^{2}\right) d x=\pi \int_{-1}^{1}\left(1-x^{2}\right) d x \\
& =\pi\left[x-\frac{1}{3} x^{3}\right]_{-1}^{1}=\pi\left[\left(1-\frac{1}{3} 1^{3}\right)-\left(-1-\frac{1}{3}(-1)^{3}\right)\right] \\
& =\pi\left[1-\frac{1}{3}+1-\frac{1}{3}\right]=\frac{4}{3} \pi
\end{aligned}
$$

nice thy $=x$-sections are discs al radius $f(x)$

$$
V=\int_{a}^{b} \pi^{2}(x) d x=\int_{a}^{b} \pi(x)^{2} d x
$$

